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"So a military force has no constant formation, water has no
constant shape: the ability to gain victory by changing and
adapting according to the opponent is called genius."

— The Art of War, Sun Tzu (4" century B. C.)

"Strategy is a system of expedients. It is more than a science: it is
the application of knowledge to practical life, the development of
thought capable of modifying the original guiding idea in the
light of ever-changing situations; it is the art of acting under the
pressure of the most difficult conditions."

— Helmuth von Moltke (1800-1891)

"Everything is very simple in war, but the simplest thing is
difficult. These difficulties accumulate and produce a friction,
which no man can imagine exactly who has not seen war...This

enormous friction, which is not concentrated, as in mechanics, at
a few points, is therefore everywhere brought into contact with
chance, and thus facts take place upon which it was impossible to
calculate, their chief origin being chance."

- Carl von Clausewitz (1780-1831)

"Like friction and uncertainty, fluidity is an integral attribute of
the nature of war. Each episode in war is the temporary result of
a unique combination of circumstances, requiring an original
solution. But no episode can be viewed in isolation. Rather, each
merges with those that precede and follow it — shaped by the
former and shaping the conditions of the latter — creating a
continuous, fluctuating fabric of activity replete with fleeting
opportunities and unforeseen events. Success depends in large
part on the ability to adapt to a constantly changing situation."

"The occurrences of war will not unfold like clockwork. Thus, we
cannot hope to impose precise, positive control over events. The
best we can hope for is to impose a general framework of order
on the disorder, to prescribe the general flow of action rather
than to try to control each event."

— Warfighting, FMFM-1
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Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook

Overview

The purpose of this paper is to provide the theoretical framework and
mathematical background necessary to understand and discuss the
various ideas of nonlinear dynamics and complex systems theory and
to plant seeds for a later, more detailed discussion (that will be
provided in Part II of this report') of how these ideas might apply to
land warfare issues. This paper is also intended to be a general
technical sourcebook of information.

Two Intriguing Questions

Question 1: What does the behavior of the human brain have in common with
what happens on a battlefield?

The human brain is composed of about ten billion neurons, each of
which, on average, is connected to about a thousand other neurons.
What each neuron does is a complicated function of what it did before
and what its thousand or so neighbors were doing. Somehow,
mysteriously, for reasons that are still not quite clear and perhaps
never will be fully, this cauldron of ceaseless neuro-chemical activity
spawns something called "consciousness” that emerges on a much
higher level than the one on which any of the brain's constituent parts
themselves live.

Nowhere is there a prescription for an "awareness of self.” Nowhere is
there a hard-wired rule that says this arrangement of neurons will
prefer football to boxing and that arrangement will prefer soccer to
both. Nowhere on the neuronal level is there a rule that assigns the
personality that is uniquely mine. These are all emergent, higher-level
phenomena that, while owing their existence to the myriad
interactions of ten billion neurons, cannot be deduced directly from them.
As such, the human brain is the prototypical example of a complex
system, or a system composed of many nonlinearly interacting parts.
Now, what happens on a battlefield?

While no battlefield can possibly consist of as many combatants as
there are neurons in a2 human brain, the analogy between what makes
the human brain "interesting” and what makes that which happens on
a battlefield "complicated” is not such a poor one. Both consist of a
large number of nonlinearly interacting parts whose individual
behavior depends on the action and pattern of behavior of other
(nearby and not-so-nearby) parts, both obey a decentralized control,
both appear to be locally "chaotic” but harbor long-range order, both
tend not to dwell for long times near equilibrium, preferring instead to

! Land Warfare and Complexity, Part II: An Assessment of the Applicability of
Nonlinear Dynamics and Complex Systems Theory to the Representation of Land
Warfareis scheduled to be delivered to sponsor for review 1 July, 1996.
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exist almost exclusively in a nonequilibrium state, and both must
continually adapt to internal and external pressures and to the
environment. On paper, at least, the human brain and the battlefield
appear to have much in common.

Question 2: Might there be higher-level processes that emerge on the battlefield,
in the way consciousness emerges in a human brain?

Both of these enormously difficult, yet intriguing, questions are clearly
meant to be taken rhetorically (at least for the moment). However, the
motivation behind asking these two questions is what lies at the heart
of this report and the overall project of which it is a part. The goal of
this paper is to provide the reader with a basic set of tools and concepts
out of which a tentative real answer to this question might conceivably
(some day) emerge. A hint that these questions are neither ill-posed
nor simply foolish is provided by an emerging new field of research
that can loosely be called complex systems theory.

In recent years there has been a rapid growth in what has come to be
popularly known as the New Sciences of Complexity. Despite being
somewhat of a misnomer, because the “science” is arguably more a
philosophy of looking at behaviors of complex systems than a rigorous
well-defined methodology, this emerging field nonetheless has many
potentially important new insights to offer into the understanding of
the behaviors of complex systems.

A complex system can be thought of, generically, as any dynamical
system composed of many simple, and typically nonlinearly, interacting
parts. A complex adaptive system is a complex system whose parts can
evolve and adapt to a changing environment. Complex systems theory is
then the study of the behavior of such systems, and is rooted in the
fundamental belief that much of the overall behavior of diverse
complex systems — such as natural ecologies, fluid flow, the human
brain, the Internet, perhaps even on the battlefield, etc — in fact stems
from the same basic set of underlying principles.

While research in this still-developing field has yet to produce an
all-encompassing “theory of complexity,” it has already introduced
promising new analytical methodologies and has uncovered many
provocative and useful organizing principles. The fundamental
challenge of this study is to assess what insights into the understanding
of land warfare can be gained by using the tools and methodologies s
developed for the general study of nonlinear dynamics and complex
systems.
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Two Words of Caution

Before we begin the discussion in earnest, two important words of
caution are in order. The two words are infancy and buzzwords.

Infancy

Remember that, at the present time, complexity cannot be regarded as
anything but an infant science! The Santa Fe Institute in New Mexico, for
example, which is widely recognized as being a leading research center
for complex systems, was founded just a decade ago in 1984. Moreover,
many of the analytical tools and models developed for the study of
complex systems, such as genetic algorithms and agent-based
simulations, have been either developed or refined as part of the
artificial-life research effort that itself sprang up only in 1987.
Consequently, it would be premature — and unfair to complex systems
theory — to expect to find a mature set of tools and methodologies at
such an early stage of this burgeoning field's development.

Indeed, it is fair to say that it is as difficult to predict the potentially
deep and lasting implications of research in complex systems theory as
it is understood and practiced foday as it would have been difficult to
predict the implications of the state-of-the-art in, say, thermodynamics
as it was understood circa 1820. As was true of thermodynamics then,
60 or so years prior to its full maturation, it is true to say of complex
systems theory now, that the "killer application” (as it is often called in
commercial software circles) or the "killer insight” (as it is sometimes
called in physics) has not yet been born. We stress that all speculations
about possible applications of complex systems theory, whether they
appear in this report or elsewhere, must be interpreted in this light.

Buzzwords

Many buzzwords have appeared in the popular literature in recent
years, not all of which have been described accurately. Terms and
concepts such as new sciences, chaos, complexity, complex systems theory,
complex adaptive systems, and so on, are commonly used to denote the
ostensibly same fundamental core of principles.

In fact, there is no universally agreed upon definition of complex
systems theory. Complex systems theory is a catch-all phrase that
embodies a remarkably wide variety of disciplines ranging from
biology, chemistry, and physics to anthropology to sociology to
economics. Its many subfields include (but are not limited to)
nonlinear dynamics, artificial life, evolutionary and genetic
programming, cellular automata cellular games, agent-based
modeling, among many others.
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Table 1. A small sampling of research areas, concepts and tools all
falling under the broad rubric of "new sciences"

Research Areas Concepts Tools
agent-based simulations adaptation agent-based simulations
artificial life autonomous agents backpropagation
catastrophe theory autopoiesis cellular automata
cellular automata complexity cellular games

cellular games

computational irreducibility

chaotic control

chaos computational universality entropy
chaotic control theory criticality evolutionary programming
complex adaptive systems dissipative structures fuzzy logic
coupled-map lattices edge-of-chaos genetic algorithms
discrete dynamical systems emergence inductive learning
evolutionary programming fractals information theory
genetic algorithms intermittency Kolmogorov entropy
lattice-gas models phase space lattice-gas models

neural networks

phase transitions

Lyapunov exponents

nonlinear dynamical systems

prisoner's dilemma

maximum entropy

percolation theory

punctuated equilibrium

neural networks

petri nets

self-organization

Poincare maps

relativistic information theory

self-organized criticality

power spectrum

self-organized criticality

strange attractors

symbolic dynamics

time-series analysis

synergetics

time-series analysis

etc.

etc.

etc.

Table 1 partitions many of the more common terms that one often
hears in connection to "complex system theory" into three categories:

® Research areas, representing large (often interdisciplinary) fields
of current research. This means, in particular, that a great deal
remains to be learned about almost all of the areas listed in table
1. For example, while genetic algorithms are undoubtedly useful
and powerful tools, there are also a large number of difficult
open-ended problems that researchers are trying to solve about
some of their most basic behaviors.

® Concepts, denoting the set of ideas, conjectures, hypotheses,
organizing principles, and so on, that complex systems theory
has so far spawned. It represents a sampling of the vocabulary of
"The New Sciences” and appears in table 1 to remind the reader
that these terms are often misunderstood, misused, or
incorrectly defined altogether.

e Tools, representing the practical set of working methodologies,
qualitative and quantitative measures, and mathematical
descriptions that researchers have found to be useful in
describing the properties and behaviors of complex systems.
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| Note that there is some overlap among the three categories appearing
‘ in table 1, particularly between the listings appearing under Research
Areas and Tools. This underscores the fact that while nonlinear
dynamics and complex systems theory have both amassed an
a impressive arsenal of practical and theoretical tools, these sets of tools
are still evolving and are the subject of ongoing research. Notice also
that there is an important, and ironic, feedback lurking here. The very
o tools that can, and should, be used to explore as large a variety of
complex systems as possible — including, as suggested by this report,
the processes that take place on a real battlefield — are themselves
continuously refined and redefined in the process of studying those
systems. Agent-based simulations, for example, virtually define much of
what makes up artificial life studies — so that they are undeniably
powerful tools with many important insights to offer - yet there is
much that is still not understood about their basic design and how to
make the best use of them. Similarly, while neural net technology has
been around long enough that many powerful products have become
available on the commercial market, one should not lose sight of the
fact that researchers are still exploring the best way to make use of this
new technology.

The point of this cautionary discussion is simply to dispel any prior
notions that complex systems theory is nothing but a "canned set of
software routines" sitting on a shelf somewhere, ready to be installed
on a PC or MAC and used on whatever "complex problem" happens to
strike one's fancy. The reality is that complex systems theory is, at the
present time, a not terribly-well-defined and very much evolving set of ideas
and tools with which the many complex systems appearing in nature can be
studied. What makes complex systems theory an interesting prospect to
mine for ideas about what may or not really be happening on the
battlefield, is that in its short life it has already managed to produce an
impressive list of useful insights into the understanding of the general
behavior of complex systems. The goal of this project is to explore
whether this list of insights also extends to the mlhtzuy realm, and
particularly to land combat.

Organization of Paper

The paper begins with a general heuristic discussion of what is meant
by a complex system and why it represents a fundamentally new
5 approach to land warfare.

The discussion in the next section is more formal and is a
mathematical introduction to nonlinear dynamics and deterministic
chaos. This discussion summarizes the pertinent vocabulary, and uses
| simple examples to illustrate the basic ideas. Overviews of both
i qualitative and quantitative characterizations of chaos, as well as a
| discussion of relatively recent advances in chaotic control theory and
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attractor-reconstruction from experimental time-series are also
included. This section concludes with some important lessons learned
from nonlinearity and chaos and explains how these lessons can be
used by the decision maker.

The next section focuses on complex systems, beginning with a short
history and simple examples of the central concept of emergence.
Some of the more important tools of complex systems theory —
including cellular automata, genetic algorithms, neural networks, and
agent-based simulations — are discussed next. Attention is also given to
an important idea called self-organized criticality, which is arguably the
only existing holistic mathematical theory of self-organization in
complex systems. The section concludes with some general lessons
learned from complex systems theory.

The next section provides some preliminary musings on the possible
applicability of nonlinear dynamics and complex systems theory to the
understanding and/or representation of land warfare. The discussion
in this section is intended to be a brief overview of the in-depth analysis
and discussion of ideas that will be provided in Part II of this report.

The main points of this paper are summarized in the conclusion.

The two appendices and References provide additional reference
material and may be consulted as information sourcebooks. Appendix
A provides both a brief subject-sorted listing of information sources
currently available on the World Wide Web - consisting of 91 URL
links sorted into 16 categories — and an unsorted but much more
extensive alphabetized listing of approximately 700 URL links.
Appendix B provides a glossary of 100 terms commonly used in
nonlinear dynamics and complex systems theory. An extensive
reference list consisting of 330 journal articles, conference
proceedings, monographs, texts and popularizations appears at the
end of the paper.
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Introduction

"...war is not an exercise of the will directed at inanimate matter, as in the case
with the mechanical arts, or at matter which is animate but passive and
yielding as in the case with the human mind and emotion in the fine arts. In
war, the will is directed at an animate object that reacts."

— Carl von Clausewitz, On War

Is it time for a fresh new look at land warfare modeling?

In 1914, F. W. Lanchester [183] introduced a set of coupled ordinary
differential equations as models of attrition in modern warfare. Similar
ideas were proposed around that time by Chase [51] and Osipov [236].

While Lanchester's equations capture some important elements of
combat, they are applicable only under a strict set of assumptions.
These include having homogeneous forces that are continually
engaged in combat, firing rates that are independent of opposing
force levels and are constant in time, and units that are always aware of
the position and condition of all opposing units, among many others.
Lanchester’s equations also suffer from a number of significant
shortcomings, including modeling combat as a deterministic process,
requiring knowledge of “attrition-rate coefficients” (the values of which
are, in practice, very difficult if not impossible to obtain), an inability
to account for any suppressive effects of weapons, an inability to
account for terrain effects, and the inability to account for any spatial
variation of forces. Generally speaking, Lanchester’s equations simply
lack the spatial degrees-offreedom to model real-world combat. More
importantly, they also leave out the all-important human factor - that
is, the psychological and/or decision-making capability of the human
operator.

While there have been many extensions to and generalizations of
Lanchester's equations over the years (see discussion on page 139),
very little has really changed in the way we fundamentally view and
model combat attrition. It is a bit ironic that in this modemn age of
distributed interactive simulation and gigabyte-sized code driving
networked 3D virtualreality systems with embedded artificial
intelligence, the underlying principles of combat attrition calculations
in land warfare models are still largely the same as they were in
Lanchester's time; this, despite the acknowledged deficiencies of
Lanchester's equations. The question is, "Is there anything better?” Is
there a better way — perhaps a way that bucks convention — of modeling
land combat?

Recent developments in nonlinear dynamics and complex systems
theory provide a potentially powerful new set of theoretical and
practical tools to address many of the deficiencies mentioned above.
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A Proposal

These developments also potentially represent a fundamentally new
way of looking at land combat.

It is not an accident that the Lanchester equations have essentially the
same mathematical form as the equations used for studying predator
prey relationships in natural ecologies of competing species. They both
describe systems that evolve according to more or less the same basic
driving forces of attrition. But while biologists have long known that
there are universal patterns of behavior in the evolution of ecologies
that transcend the closed-form equations that are typically used to
model their behavior, the same thinking has not yet strongly
influenced ground warfare modeling. We propose that there are also
universal patterns of behavior underlying and driving the evolution of
military combat that transcend the grossly simplified form of the
Lanchester equations and the approximations and assumptions that
they embody.

The main idea put forth in this paper is that significant new insights
into the fundamental processes of land warfare can be obtained by
viewing land warfare as a complex adaptive system (CAS). That is to say, by
viewing a military "conflict" as a nonlinear dynamical system composed
of many interacting semi-autonomous and hierarchically organized
agents continuously adapting to a changing environment.

Compared to most conventional modeling philosophies, this approach
represents a fundamental shift in focus

"Hard-wiring" into a model a sufficient number of (both low- and high-level)
details of a system to yield a desired set of "realistic” behaviors — the rallying
cry of such models being "more detail, more detail, we need more
detail!”

to....

Looking for universal patterns of high-level behavior that naturally and
spontaneously emerge from an underlying set of low-level interactions and
constraints — the rallying cry in this case being "allow evolving global
patterns to emerge from the local rules!"

We should emphasize from the start what this study is and what it is
not. This study is not a wholesale attempt to replace all Lanchester
equation-based modeling of combat attrition. Just as the Lotka-Volterra
equations for predator-prey dynamics capture some of the essence of
population dynamics in natural ecologies, the Lanchester equations, or
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one of their countless generalizations, may well describe combat
attrition under an appropriate set of combat conditions. This study
instead proceeds on the much broader charter of identifying the tools
and methodologies that have been developed for the general study of

" nonlinear dynamics and complex systems and adapting them - along
with whatever insights they might provide - to the modeling of land
warfare.

- To be more specific, two relatively new mathematical modeling

techniques are applied to the modeling of land warfare as a complex
adaptive system:

® local-rule-based dynamics patterned after cellular automata
models

® parameters of the local decision space and the formulation of
strategy and/or tactics patterned after genetic algorithms

Cellular automata and genetic algorithms are both common tools in
the repertoire of tools used to describe and study complex systems. A
self-contained discussion of what they are and how they are applied
appears in the main text of this paper. The proposed methodology also
makes fundamental use of game theory and neural networks.

Before discussing how land combat may be viewed as a complex
adaptive system, it is prudent to first introduce the general notion of
complex system.

Complex Systems

Consider some familiar examples of dynamics in complex systems:

® the predator-prey relationships of natural ecologies

® the economic dynamics of world markets

the chaotic dynamics of global weather patterns

s the firing patterns of neurons in a human brain

the information flow on the Internet

the apparently goal-directed behavior of an ant colony

¢ the competing strategies of a nation's political infrastructure
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® many, many others.....

Now consider what these systems all have in common. Apart from
obviously evolving according to very complex dynamics, almost all
complex systems also share these fundamental properties:

® Complex systems consist of — and their overall behavior stems from - a
large assemblage of interconnected (and typically nonlinearly)
interacting parts

© each of the systems listed above, as well as countless other
examples of complex systems that one can write down, owe
their apparent complexity to the fact that they consist not
just of parts, but of parts whose states continually change as
a function of the continual changes undergone by other
parts to which they are connected.

® Complex systems tend to be organized hierarchically, with complex
behavior arising from the interaction among elements at different levels
of the hierarchy

© whether we consider galactic systems, living organisms, or
social or military organizations, the various structures
making up all such systems are almost always organized in a
hierarchy

« individual parts of systems (usually called agents) form
higher-level groups that act as agents that can then
interact with other agents; these groups, in turn, form
super-groups that also act as agents, interacting with
other agents (though perhaps on a different timescale);
and so on.

© moreover, every part of the hierarchy is driven by two
opposite tendencies:

*  an integrative tendency, compelling it to function as a part
of the larger whole (on higher levels of the hierarchy)

* a self-assertive tendency, compelling it to preserve its
individual autonomy

® The overall behavior of complex systems is self-organized under a
decentralized control

© there is no God-like "oracle" dictating what each and every
part ought to be doing, no master "neuron” telling each
neuron when and how to "fire"

10
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© parts act locally on local information and global order
emerges without any need for external control

© According to Stuart Kauffman, who is one of the leading
researchers of complex systems theory, "contrary to our
deepest intuitions, massively disordered systems can
spontaneously ‘crystallize' a very high degree of order."
[171]

© self-organization takes place as a system reacts and adapts to
its external environment

® Qverall behavior is emergent

© the properties of the "whole" are not possessed by, nor are
they directly derivable from, any of the "parts"

© examples: a line of computer code cannot calculate a
spreadsheet, an air molecule is not a tornado and a neuron
is not conscious :

© emergent behaviors are typically novel and completely
unanticipated

© elements of emergent behaviors may be universal, in the
sense that more than one local rule set may induce more or
the less same global behavior

® Longterm behavior typically consists of a nonequilibrium order

© nonequilibrium order refers to organized states (sometimes
called dissipative structures) that remain stable for long
periods of time despite matter and energy continually
flowing through them

© a vivid example of nonequilibrium order is the Great Red
Spot on Jupiter (see figure 1). This gigantic whirlpool of
gases in Jupiter's upper atmosphere has persisted for a much
longer time (on the order of centuries) than the average
amount of time any one gas molecule has spent within it

® Parts consist more of niches that need to be filled rather than of distinct
labeled entities that carry an importance all their own

© the importance of a given "part” is dictated more by how
that part interacts with the whole - and the "meaning” that
particular interaction or set of interactions has in context of

11
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the whole - than by what that part represents apart from the
whole

© as an example, consider how human beings now support
themselves by driving cars, typing away at computer
keyboards, sending faxes cross-country... activities that were
nonexistent at the turn-of-the-century; moreover, it does not
matter who repairs a malfunctioning computer, but only
that the computer repair service exists

Figure 1. The Great Red Spot on Jupiter

® Behavior cannot be described by reductionist methods alone

© The traditional Western scientific method is predicated on a
reductionist philosophy, in which the properties of a system
are deduced by decomposing the system into progressively
smaller and smaller pieces. However, in so doing, the
emergent properties of a system are lost. In the act of
exploring properties reductionism loses sight of the dyrnamics.
The analysis of complex systems instead requires a holistic,
or constructionist, approach.

o the properties of entities occupying "niches" on high-levels
of the hierarchy influence, in a nonlinear fashion, entities
occupying "niches" on the lower levels of the hierarchy;
properties of these low-level entities in turn feed back up to
influence the behavior of the high-level entities - the
lifeblood of all complex adaptive systems is this continuous
cycling of information from top to bottom to top to
bottom...

o the complex systems theory "approach" is sometimes
concisely referred to as collectivist, a term designed to
distinguish it from more traditional — and uni-directional -

12
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topdown (or purely reductionist) or bottom-up (or purely
synthesist) approaches

® Structure- and process-driven dynamics vice simple aggregate of
individual parts of a structure

© the essence of a complex system is its continual adaptive
evolution; no static picture — such as is obtained, say, by
simply listing a system's parts and how they interact - can
adequately capture the often latent and otherwise subtle
patterns that such systems tend to exhibit over long times

© complex systems theory research consists not so much of
observing what state a system happens to be in at what time
as observing what kinds of patterns of behavior systems
exhibit over the course of their entire evolution

One of the basic questions begging to be asked of all complex systems
is, "What are the wuniversal patterns of behavior?” According to
thermodynamics and statistical mechanics, the critical exponents
describing the divergence of certain physical measurables (ex: specific
heat, magnetization, correlation length, etc.) are universal at a phase
transition in that they are essentially independent of the physical
substance undergoing the phase transition and depend only on a few
fundamental parameters (such as the dimension of the space and the
symmetry of the underlying order parameter). In like manner, an
important driver fueling the fervor behind the emerging new "sciences
of complexity" is the growing belief that "high-level” behavior of all
complex systems can be traced back to essentially the same
fundamental set of universal principles. Much of the study of complex
systems consists of looking for the "low-level” underpinnings of
universal patterns of "high-level” behavior.

Turning our attention now more to the subject of this study, the
italicized question at the beginning of the previous paragraph can be
rephrased as "What can we learn from how complex adaptive systems
behave in general - as well as from the techniques and methodologies
that have been developed for the theoretical analysis of real physical
systems — that offers an alternative approach to land warfare
modeling?"

The study of complex adaptive systems is predicated on the belief that
while individual systems may differ in the details of their composition
and internal dynamics, they nonetheless all share a general set of
fundamental principles underlying their overall patterns of behavior.
It is interesting to point out that one of the main reasons why complex
adaptive systems are so attractive to study happens to also be one of
the main reasons why it is very difficult to abstract a unifying theory for
their behavior. Because complex adaptive systems typically involve

13
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their behavior. Because complex adaptive systems typically involve
nonlinear interactions, their overall behavior is usually more than just
a simple sum of the behaviors of their parts. Nonetheless, while
research in this still-developing field has yet to produce anything that
comes close to being an all-encompassing "theory of complex systems,"
it has already uncovered many provocative and useful organizing
principles.

General references include Bak [15], Cowan, et. al. [60], Holland
[144], Kauffman [172], Lewin [196], Mainzer [205], Nadel
[227]-[230], and Waldrop [311].

What Complex Systems Theory Is

Terms and concepts such as new sciences, chaos, complexity, complex systems
theory, complex adaptive systems, and so on, are commonly used to denote
the ostensibly same fundamental core of principles. While there is
considerable overlap in meaning among the terms on this list, it is a
mistake to believe that all of these terms can be used interchangeably.

Figure 2 shows a sketch of a loose but defensible definition of complex
system theory (CST). The reader is urged to keep this image in mind
throughout the ensuing discussion in this paper.

Figure 2. What is complexity?
path P

N

8

initial Sfmal

conwentional: S = f[sinitial]
complex: Sﬁnal = l‘[:Sinitial ,P]

The study of the behavior of collections of simple (and typically nonlinearly)
interading parts that can evolve and adapt to a changing entvironment

The simplest way to define complex systems theory is to contrast it with
a conventional "classical physics” approach to the dynamics of simple
systems. Ignoring the inherent complexities of individual problems,
most of classical physics rests on the basic assumption that if only the
initial state of a physical system — say S, ., — is known, then the final
state of the system - say, S; , — can be obtained by a suitable function f.
That is to say, classical physics essentially reduces to searching for a
function f, such that S, = (S, ;;,)- Classical physics also assumes that

14
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both the initial and final states of the system - S ... and S,
respectively - can be specified exactly by some finite set of variables.

If the physical system is simple enough, of course, these simplifying
assumptions and description is entirely adequate. For example, if one
holds an object at some height off the ground, the initial state of this
"system" is completely specified by the parameters (m, v,=0, h), where
m is the object's mass, v, is its initial velocity and h is its height from the
ground. After the object is released, its final state, as it hits the ground,

is easily found to be (m, v=/2gh , h=0), where g is the gravitational
‘~ constant (g=9.8 m/s’).

In contrast, CST is concerned with more complicated systems, where
"complicated” typically means that a system consists of a large number
of mutually interrelated parts. In dealing with such systems, CST
generalizes the conventional approach in two fundamental ways: (1)
the final state, Sy, , is no longer assumed to be a function of the initial
state alone, but can depend strongly on the path, P, that the system
follows in evolving from its initial to final states, and (2) the initial state
is endowed with both an internal and external structure. CST can be
described as the study of the behavior of collections of simple (and typically
nonlinearly) interacting parts that can evolve.

Generally speaking, complex systems theory...

® is a general approach to understanding the overall behavior of a
system composed of many nonlinearly interacting parts that is
predicated on the premise that the system’s behavior owes at
least as much to how the system's parts all interact as to what those
parts are

® teaches us that "complex behavior" is usually an emergent
self-organized phenomenon built upon the aggregate behavior
of very many nonlinearly interacting "simple" components.

¢ is an approach that tries to construct the minimal underlying
rule set from which desired behaviors naturally emerge rather
than hard-wiring in desired properties and/or behaviors from
the start

Complex adaptive system theory also assumes that systems are
composed of interacting agents that continually adapt by changing
their internal rules as the environment and their experience of that
environment both evolve over time. Since a major component of an
agent's environment consists of other agents, agents spend a great deal
of their time adapting to the adaptation patterns of other agents.

15
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What Complex Systems Theory Is Not

While it is important to understand what complex systems theory is, it
is equally as important to understand what it is not. Complex systems
theory is neither a "canned" algorithm that sits ready-and-able
somewhere on a shelf, nor is it even a well-defined methodology:

© each problem must be approached on its own terms

© what is usually common to most approaches is what is
borrowed from dynamical systems theory, computer science,
information theory, biological/chemical pattern formation

© CST and CASs are best described as qualitative — not
quantitative — interdisciplinary sciences; consequently, they
are probably a poor modeling choice if numerical
predictability is desired

Table 2. Land combat as a complex adaptive system

nonlinear interaction

combat forces composed of a large
number of nonlinearly interacting parts

hierarchical structure

combat forces organized in a command
and control hierarchy

deceniralized control

there is no master "oracle” dictating the
actions of each and every combatant

selforganization

local action, which often appears
"chaotic” induces long-range order

nonequilibrium order

military conflicts, by their nature,
proceed far from equilibrium

adaptation

combat forces must continually adapt to
an amorphous environment

collectivist dynamics

UL

there is a continual feedback between
the behavior of (low-level) combatants
and the (high-level) command structure

Land Combat as a Complex Adaptive System?

Military conflicts, particularly land combat, have almost all of the key
features of complex adaptive systems (see table 2):

® Nonlinear interaction

© friendly and enemy forces are composed of a large number
of nonlinearly interacting "parts”

16
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© combat is not just an aggregate of many smaller-scale
conflicts, but is a complex system composed of parts whose
action and pattern of behavior depends on the action and
pattern of behavior of other (nearby and notso-nearby)
parts

© "parts" interact in part ...

* locally — according to default combat "doctrine," to what
"neighboring” parts are themselves doing, and to explicit
orders issued by local commanders

and, in part

* globally - according to the orders issued by global
commanders

© sources of nonlinearity include:

+ feedback loops in C2 hierarchy

* interpretation of, and adaptation to, enemy actions; i.e.
nonlinear feedback among enemy combatants (measure
~> countermeasure —> counter countermeasure —> ...) and
between combatants and environment

+ elements of chance ("fog of war")

+ decision making process (in which a sequence of not
necessarily optimal or desired events is often put into
motion because of other seemingly insignificant events)

© combat timelines and partial outcomes are often
determined by (often unanticipated) local effects
(exponential divergence of trajectories)

® Hierarchical structure
© parts are organized in a (command and control) hierarchy
® Decentralized control
© despite the presence of "global commanders,” who have a
(global, albeit imprecise) view of the overall combat arena,

there is no master "voice" that dictates the actions of each
and every combatant

® Self-organization
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o local action, which often appears "chaotic,” induces
long-range order

© command and control tends to organize what is otherwise
disorganized action

® Nonequilibrium order

o military conflicts, by their very nature, typically proceed far
from equilibrium

o there is no unique "solution" — no stable state — towards
which a battle evolves

o the lifeblood of complex adaptive systems is novelty and
nonequilibrium. Military campaigns likewise depend on the
creative leadership of their commanders, success or failure
often hinging on the brilliant tactics conceived of in the
heat of combat or the mediocre one that is issued in its
place.

® Adaptation

© their parts, in order to survive, must continually adapt to a
changing combat environment (new strategies and tactics
must be conceived of and implemented on-the-spot and in
immediate response to changes in the environment)

© each combatant comes into a conflict armed with a set of
default rules ("doctrine"), a goal (or goals) and hardware
designed to facilitate the implementation of doctrine. The
success or failure of a campaign depends on how well each
combatant adapts to the continually changing combat
environment, which includes the functioning and
adaptation of both friendly and enemy combatants.

o actions and outcomes of actions are as much a function of
the internal "human element” (reasoning capacity,
unpredictability, inspiration, accident, etc.) as they are of
the hardware

® Parts are more like "niches" than "parts”

© their parts, particularly those represented by the lowest level
combatant and as long as the warfighting skills of
combatants exceed some threshold warfighting skill level,
are essentially interchangeable

18
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® Collectivism

o there is continual feedback between the behavior of
(low-level) combatants and the (high-level) C? hierarchy

The central thesis of this paper is that these largely conceptual
connections between properties of land warfare and properties of
complex systems in general can be extended to forge a set of practical
connections as well. That is to say, that land warfare does not just look
like a complex system on paper, but can be well characterized in
practice using the same basic principles that are used for discovering
and identifying behaviors in complex systems.

Redefined Conventions

Looking at land warfare through CAS-colored glasses naturally
requires us to redefine the conventions by which military conflicts
have traditionally been viewed:

® where conventional wisdom sees combat as essentially a head on
collision between two massive (and perhaps slightly malleable)
billiards, obeying a Newtonian-physics-like
calculus-ofinteraction, the CAS approach sees a self-organized
hierarchy of evolving activity of two interacting fluids, in which
global patterns of combat emerge out of an evolving substrate of
low-level local interaction rules

® where conventional wisdom focuses on losses and attrition, the
CAS approach highlights the evolving struggle to survive and
emerging global patterns of (locally unanticipated) behavior

® where conventional wisdom asks "What are the consequences of
this strategy?" the CAS approach tries instead to objectively map
out the entire space of possible strategies.

Looking at land warfare through CAS-colored glasses also naturally
alters the types of questions that are asked of "models of reality." The
typical kinds of CAS questions one might ask of combat models
include:

® What elements of combat are universal? That is, what elements of
combat transcend the details of the individual components of
which they are composed?

® What kinds of self-organized behaviors emerge out of a system obeying a
well-defined combat-docirine? To what extent is a military force

19




Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook

greater than the simple sum of its parts?> To what extent does
military doctrine enhance force synergy?

® What does the global "decision space” look like? That is, how do the
various doctrinal, tactical and/or strategic elements all correlate
with one another? Map out the entire possibility phase space of
options available for all local and global combat units.

20
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Nonlinear dynamics and Chaos

Introduction

Short History

"Not only in research, but also in the everyday world of politics and
economics, we would all be better off if more people realized that simple
dynamical systems do not necessarily lead to simple dynamical behavior."

-R. M. May

So concludes Robert May in his well-known 1976 Nature review article
[208] of what was then known about the behavior of first-order
difference equations of the form x,,=F(x,). What was articulated by a
relatively few then, is now generally regarded as being the central
philosophical tenet of chaos theory: complex behavior need not stem from a
complex underlying dynamics.

In this section we introduce the basic theory and concepts of nonlinear
dynamics and chaos. The discussion begins with a definition of a
deterministic dynamical system, which for our purposes we define
simply as any physical system for which there exists a well-defined
prescription, either in terms of differential or difference equations, for
calculating the future behavior given only the system's initial state.
Given that such systems evolve deterministically in time, one might
reasonably expect them to behave regularly at all times. After all, each
successive state is a uniquely prescribed function of the preceding
state. Chaos theory shows, however, that this naive intuition is wrong,
and that perfectly well-defined, deterministic, but nonlinear dynamics,
often leads to erratic and apparently random motion. Moreover, the
dynamics itself need not be at all complicated.

Table 3 shows a brief chronology of some of the milestone events in
the study of nonlinear dynamics and chaos.

Chaos was arguably born, at least in concept, at the turn of the last
century with Henri Poincare's discovery in 1892 that certain orbits of
three or more interacting celestial bodies can exhibit unstable and
unpredictable behavior. A full proof that Poincare's unstable orbits are
chaotic, due to Smale, appeared only 70 years later. E. N. Lorenz'
well-known paper in which he showed that a simple set of three
coupled, first order, nonlinear differential equations describing a
simplified model of the atmosphere can lead to completely chaotic
trajectories was published a year after Smale's proof, in 1963. As in
Poincare's case, the general significance of Lorenz 's paper was not
appreciated until many years after its publication. The formal rigorous
study of deterministic chaos began in earnest with Mitchell
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Feigenbaum's discovery in 1978 of the universal properties in the way
nonlinear dynamical systems approach chaos.

Table 3. Some historical developments in the study of nonlinear
dynamics and chaos

Year [ Researchers Discovery

1875 Weierstrass  |constructed everywhere continuous and nowhere
differentiable function

1890 | King Oscar II of |offered prize for 1st person to solve the n-body

Sweden problem to determine the orbits on n-celestial
bodies and thus prove the stability of the solar
system; this problem remains unsolved in 1995

1892 Poincare in the course of studying celestial motion,
discovered that the ("homoclinic") orbit of three
or more interacting bodies can exhibit unstable
and unpredictable behavior (chaos is born!)

1932 Birkhoff observed what he called "remarkable curves" in
the dynamics of the plane with itself

1954 | Kolmogorov |discovered that motion in phase space of classical
mechanics is neither completely regular nor
completely irregular, but that trajectory depends
on the initial conditions; KAM theorem

1962 Smale mathematical proof that Poincare's homoclinic
orbits are chaotic

1963 Lorenz first systematic analysis of chaotic attractors in
simplified model of atmospheric air currents;
coined the "Butterfly effect”

1970 Mandelbrot |coined the term "fractal" and suggested
applicability to a wide variety of natural
phenomena

1971 | Ruelle, Takens |suggest new mechanism for turbulence: strange
attractors

1975 Li, Yorke use "chaos” to denote random output of]
deterministic mappings

1976 May wrote important review article in Nature on
complicated dynamics of population dynamics
models

1978 | Feigenbaum |discovered universal properties in the way
nonlinear systems approach chaos

1990 { Ott, Grebogi, |beginning of chaos control theory

Yorke
1990 Pecora beginning of synchronization of chaotic systems
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The term "chaos" was first coined by Li and Yorke in 1975 to denote
random output of deterministic mappings. More recently, in 1990,
Ott, Grebogi and Yorke suggested that certain properties of chaotic
systems can be exploited to control chaos; that is, to redirect the
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chaotic system into another desired orbit. Ironically, chaos can be
"controlled" precisely because of its inherent instabilities, and there is
no counterpart "control theory" for nonchaotic systems (see page 59).

R Experimentally, deterministic chaos has by now been observed in just
about every conceivable physical system that harbors some embedded
nonlinearity:* arms races, biological models for population dynamics,
chemical reactions, fluids near the onset of turbulence, heart beat
rhythms, josephson junctions, lasers, neural networks, nonlinear
optical devices, planetary orbits, etc.

Fractals - that is, selfsimilar objects that harbor an effectively infinite
number of layers of detail — were (formally) born in 1875, when the
mathematician Weierstrass had constructed an everywhere continuous
but nowhere differentiable function, though Weierstrass neither
coined the term nor was, in his time, able to fully appreciate the
complexity of his own creation. A fuller understanding of fractals had
to await the arrival of the speed and graphics capability of the modern
computer. The term "fractal” was introduced by Mandelbrot about a
hundred years after Weierstrass' original construction.

Dynamical Systems

A dynamical system - as it is typically understood by physicists — is any
physical system that evolves in time according to some well-defined
rule. Its state is completely defined at all times by the values of N
variables, x,(t), x,(t),..xy(t), where x/(t) represent any physical
quantity of interest (position, velocity, temperature, etc.). The abstract
space in which these variables "live" is called the phase space I'. Its
temporal evolution is specified by an autonomous system of N, possibly
coupled, ordinary first-order differential equations:

dx
E =F1(x1,x2, ey XN; 001, Q24 ...y aM)a
dxy
— = Fa(x1,x2, .. xNn; 01, 0, ...0Ly),

dxy
. = = Fn(x1,%2, .. xn; 01, 02, ...0Ly),

2 Note that nonlinearity is a necessary, but not sufficient condition for

deterministic chaos. Linear differential of difference equations can be solved
exactly and do not lead to chaos.
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where ;, ,, ..., O, are a set of M control parameters, representing any
external parameters by which the evolution may be modified or driven.
The temporal evolution of a point x(t) = (x,(t), X,(t),...xy(t)) traces out
a trajectory (or orbit) of the system in I'. The system is said to linear or
nonlinear depending on whether F = (F,, F,, ..., F) is linear or
nonlinear.’ Nonlinear systems generally have no explicit solutions.

Once the initial state x(t=0) of the system is specified, future states,
x(t), are uniquely defined for all times t. Moreover, the uniqueness
theorem of the solutions of ordinary differential equations guarantees
that trajectories originating from different initial points never
intersect.

In studying deterministic chaos, one must make a distinction between
chaos in dissipative systems (such as a forced pendulum with friction)
and conservative systems (such as planetary motion); see below.

Discrete-time Poincare maps

A convenient method for visualizing continuous trajectories is to
construct an equivalent discrete-time mapping by a periodic
"stroboscopic” sampling of points along an orbit. One way of
accomplishing this is by the socalled Poincare map (or
surface-ofssection) method. In general, an (N-1)-dimensional
surface-of-section S in the phase space I is chosen, and we consider the

sequence of successive intersections - I, I, ..., I, ... — of the flow x(t)
with S. Introducing a system of coordinates, y,, y,, ..., ¥5,» on S and
representing the intersections I, by coordinates y,,, y;o, ..., Ying» the

system of differential equations is replaced by the discrete-time
Poincare mapping (see figure 3):

/
Yi1 = Gl(}’i,l,)’i,z, s YiN-1, 01,02, cees OLM),

4
Yi2 = G200i1,¥i2s -+ ViN-15 01, 02, ..o, Opg),

!
YiNa = Gy ()’i,l,yi,z, <o YiN-15 A1, A2, .y o).

8 If f is a nonlinear function or an operator, and x is a system input

(either a function or variable), then the effect of adding two inputs, x, and x,,
first and then operating on their sum is, in general, not equivalent to
operating on two inputs separately and then adding the outputs together; i.e.
f(x+y) is, in general, not equal to f(x) + £(y).
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Figure 3. Poincare Map

Phase Space Volumes

Consider a small rectangular volume element AV around the point x,,
For discrete-time Poincare maps of the form x_,,=G(x ), the rate of
change of AV -say, A - is given by the absolute value of the Jacobian of
G:

A== |det(%) I

Since the motion in phase space is typically bounded, we know that
volumes do not, on average, expand; i.e. A, and therefore the Jacobian
J, are not positive. On the other hand, the behavior of systems for
which A<0 (called dissipative systems) is very different from the behavior
of systems that have A=0 (called conservative systems).

Dissipative Dynamical Systems

Dissipative systems — whether described as continuous flows or
Poincare maps — are characterized by the presence of some sort of
“internal friction" that tends to contract phase space volume elements.
Contraction in phase space allows such systems to approach a subset of
the phase space called an attractor, A C I, as t = . Although there is
no universally accepted definition of an attractor, it is intuitively
reasonable to demand that it satisfy the following three properties:

® Invariance: A is invariant under the mapF-i.e. FA=A
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® Attraction: there is an open neighborhood B containing A such
that all points x(t) in B approach A as # — o; the set of initial
points x,(t=0) such that x,(t) approaches A is called the basin of
attraction of A

® Irreducibility: A cannot be partitioned into two nonoverlapping
invariant and attracting pieces; a more technical demand is that
of topological transitivity — there must exist a point x* in A such
that for all x in A there exists a positive time T such that x (T) is
arbitrarily close to x

The simplest possible attractor is a fixed point, for which all trajectories
starting from the appropriate basin-of-attraction eventually converge
onto a single point. For linear dissipative dynamical systems, fixed
point attractors are in fact the only possible type of attractor.
Nonlinear systems, on the other hand, harbor a much richer spectrum
of attractor-types. For example, in addition to fixed-points, there may
exist periodic attractors such as limit cycles for two-dimensional flows or
doubly periodic orbits for three-dimensional flows. There is also an
intriguing class of attractors that have a very complicated geometric
structure called strange attractors.

Strange Attractors

The motion on strange attractors exhibits many of the properties
normally associated with completely random or chaotic behavior,
despite being well-defined at all times and fully deterministic. More
formally, a strange attractor Ay is an attractor (meaning that it satisfies
the three properties of attractors given above) that also displays
sensitivity to initial conditions. In the case of a one-dimensional map,
x,,,;= f(x,), for example, this means that there exists a 8 > 0 such that
for all x in Ag and any open neighborhood U of x, there exists x* in U
such that If*(x) - f*(x*)| > 8. The basic idea is that initially close points
become exponentially separated for sufficiently long times. This has
the important consequence that while the behavior of each initial
point may be accurately followed for short times, prediction of long
time behavior of trajectories lying on strange attractors becomes
effectively impossible. Strange attractors also frequently exhibit a
selfssimilar or fractal structure.

Deterministic Chaos

"Chaos is a name for any order that produces confusion in our minds."
- G. Santayana

What is deterministic chaos? Despite the over three decades of
research and countless books and papers that have been written on the
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subject of deterministic chaos, there is still no generally accepted
definition. Intuitively, deterministic chaos is the irregular or random
appearing motion in nonlinear dynamical systems whose dynamical
laws uniquely determine the time evolution of the state of the system
from a knowledge of its past history. It is not due to either external
noise, the system having an infinite number of degrees-of-freedom or
any quantum-mechanical uncertainty. The source of the observed
irregularity in deterministic chaos is an intrinsic sensitivity to initial
conditions.

A more mathematically rigorous definition of chaos, that holds for
both continuous and discrete systems, is due to Devaney [72]. Let V be
a set. Amap f: V>V is said to be chaotic on V if (1) f has sensitive
dependence on initial conditions, (2) f is topologically transitive, and
(3) periodic points are dense in V. Devaney states:

"To summarize, a chaotic map must possesses three
ingredients: unpredictability, indecomposability, and the
element of regularity. A chaotic system is unpredictable
because of sensitive dependence on initial conditions. It
cannot be broken down or decomposed into two subsystems
(two invariant open subsets) which do not interact under f
because of topological transitivity.* And, in the midst of this
random behavior, we nevertheless have an element of
regularity, namely the periodic points which are dense®."

Several examples of deterministic chaos are discussed below.

Conservative Dynamical Systems

In contrast to dissipative dynamical systems, conservative systems
preserve phase-space volumes and hence cannot display any attracting
regions in phase space. Consequently, there can be no fixed points, no
limit cycles and no strange attractors. However, there can still be
chaotic motion in the sense that points along particular trajectories
may show sensitivity to initial conditions. A familiar example of a
conservative system from classical mechanics is that of a Hamiltonian
system. Although the chaos exhibited by conservative systems often
involves fractal-like phase-structures, the fractal character is of an
altogether different kind from that arising in dissipative systems.

* A topologically transitive orbit is an orbit such that, for all pairs of

regions in the phase space, the orbit at some point visits each region of the
pair. That is to say, it is always possible to eventually get from one area around
a state to an area around any other area by following the orbit.

5 A set of points X is dense in another set Y if an arbitrarily small area
around any point in Y contains a point in X.
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Example #1: The Bernoulli Shift Map

Despite bearing no direct relation to any physical dynamical system,
the one-dimensional discrete-time piecewise linear Bernoulli Shift map
nonetheless displays many of the key mechanisms leading to
deterministic chaos. The map is defined by

Xne1 =fxn)=2x,mod 1, 0 <xp <1,
where x mod 1 = x - Integer(x), and Integer(x) is the "integer part of" x.

We are interested in the properties of the sequence of values x,,
x=f(x,), X, = f(x;) = £/(x,),... — or the orbit of x, - generated by
successive applications of the Bernoulli shift to the initial point, x,.

In turns out that the most convenient representation for the initial
point, x,, is as a binary decimal. That is, we write
L

= 7 T = 0.010203...,

xo=2‘.—27— 2

where ; is equal to either 0 or 1 for all i.

For example, the binary expansion of 1/3 =0/2 + 1/2%+0/2° + 1/2* +
... = 0.0101, where 01 means that the sequence "01" is repeated
ad-infinitum. Expansions for arbitrary rationals r = p/ q, where p and q
are integers, are relatively easy to calculate. Expansions for irrational
numbers may be obtained by first finding a suitably close rational
approximation. For example, 7 - 3 ~ 4703/33215 = 0.001001000011,
which is correct to 12 binary decimal places.

This binary decimal representation of x, makes clear why this map is
named the Bernoulli "shift." If x;, < 1/2, then a,=0; if x;, > 1/2, then
a,=1. Thus

2xo if(ll =0
x1 =fx0)={ o—1ifay =1 = fixo) =0.a201304...

In other words, a single application of the map f to the point x,
discards the first digit and shifts to the left all of the remaining digits in
the binary decimal expansion of x,. In this way, the nth iterate is given
by x =0t 0 .o O, ...

n+1 7" n+2

What are the properties of the actual orbit of x,? Since f effectively reads off
the digits in the binary expansion of x;, the properties of the orbit
depend on whether x, is rational or irrational. For rational x,, orbits
are both periodic and dense in the unit interval; for irrational x, orbits
are nonperiodic, with the attractor being equal to the entire unit
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interval. Moreover, the Bernoulli shift is ergodic. That is to say, because
any finite sequence of digits appears infinitely many times within the
binary decimal representation of almost all irrational numbers in [0,1]
(except for a set of measure zero), the orbit of almost all irrationals
approaches any x in the unit interval to within an arbitrarily small
distance an infinite number of times.

We now use the Bernoulli shift to illustrate four fundamental concepts
that play an important role in deterministic chaos theory:

® stability
¢ predictability
® deterministic randomness

¢ computability

Stability

Chaotic attractors may be distinguished from regular, or nonchaotic,
attractors by being unstable with respect to small perturbations to the
initial conditions; this property is frequently referred to as simply a
sensitivity to initial conditions. However, while all Bernoulli shift orbits
are generally unstable in this sense, only those originating from
irrational x0 are chaotic. Suppose that two points, x, and x,, differ
only in the nth place of their respective binary decimal expansions. By
the nth iterate, the difference between their evolved values,
£ (x,)£"(x,")) |, will be expressed in the first digit; i.e., arbitrarily small
initial differences — or "errors" — are exponentially magnified in time.
If Ix, - x,'| ~ 10®, for example, their respective orbits would differ by
order ~1 by the 100th iterate. Physically, we know that any
measurement will have an arbitrarily small, but inevitably finite, error
associated with it. In systematically magnifying these errors, nonlinear
maps such as the Bernoulli shift effectively transform the information
originating on microscopic length scales to a form that is
macroscopically observable.

Predictability

Exponential divergence of orbits places a severe restriction on the
predictability of the system. If the initial point x, is known only to
within an error dx,, for example, we know that this error will grow to
8x,= exp(n In 2) 3%, (mod 1) by the n® iteration. The relaxation time,
t, to a statistical equilibrium - which is defined as the number of
iterations required before we reach a state of total ignorance as to the
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minimum n such that 8x, ~ 1 — is therefore given by T ~ Inldx,l/In 2.
For all times t > T, the initial and final states of the system will be
causally disconnected.

Deterministic Randomness

On the one hand, the Bernoulli shift is a linear difference equation
that can be trivially solved for each initial point x;: x, = 2"x, (mod 1).
Once an initial point is chosen, the future iterates are determined
uniquely. As such, this simple system is an intrinsically deterministic
one. On the other hand, look again at the binary decimal expansion of
a randomly selected x,. This expansion can also be thought of as a
particular semi-infinite sequence of coin tosses,

x0=0.011010011010001... < xo = 0.THHTHITHTHHHT....

in which each 1 represents heads and each 0 represents tails. In this
way, the set of all binary decimal expansions of 0 < x, < 1 can be seen as
being identical to the set of all possible sequences of random coin
tosses. Put another way, if we are merely reading off a string of digits
coming out of some "black-box," there is no way of telling whether this
block-box is generating the outcome by flipping a non-biased coin or is
in fact implementing the Bernoulli shift for some precisely known
initial point. Arbitrarily selected x, will therefore generate, in a strictly
deterministic manner, a random sequence of iterates, x,, X,, X, .
Notice, however, that the Bernoulli shift generated "randomness" is of
an altogether different character from that exhibited by the temporal
sequence of center-site values in some cellular automaton systems (see
page 81). While a cellular automaton system generates random
sequences from manifestty nonrandom simple initial seeds, the
Bernoulli shift effectively unravels the randomness that is already
present in the initial state. Moreover, it is important to point out that
while one is always assured of randomly selecting an irrational x, (with
probability one) — by virtue of the fact that rationals only occupy a
space of measure zero — one is at the same time limited in a practical
computational sense to working with finite, and therefore rational,
approximations of x,. The consequences of this fact are discussed
below.

Computability

While one can formally represent an arbitrary point x by the infinite
binary-decimal expansion x = 0.0,,0,Q;..., in practice one works only
with the finite expansion, x = 0.0,,0,0,...0.,. Conversely, any sequence
of coin tossings is also necessarily finite in duration and therefore
defines only a rational number.
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Given this restriction, in what sense are chaotic orbits computable?
When implemented on a computer, for example, a single iteration of
the Bernoulli map is realized by a left shift of one bit followed by an
insertion of a zero as the rightmost bit. Since any x, is stored as a
finite-bit computer word, the result is that all x, are eventually mapped
to the (stable fixed point) x,*:

xo =0 . 01 02 O3 ... Oyl Oy
x1=0.aza3a4... Oy 0

%y =0.0 000 0 0

All of the points of a finite length orbit, x,, x,,...,x,, may therefore be
assured of having at least m-bit accuracy by computing x, to n+m bits.
A number x is said to be computable if its expansion coefficients o,
may be algorithmically generated to arbitrarily high order. Thus, so
long as the initial point x, is itself a computable irrational number, its
orbit will be chaotic and computable. One can show, however, that
there are many more noncomputable irrationals than computable
ones.

Example #2: The Logistic Map

Just as the Bernoulli shift map provides important insights into some of
the fundamental properties of dynamical chaos, the logistic map is
arguably the simplest (continuous and differentiable) nonlinear system
that captures most of the key mechanisms responsible for producing
dynamical chaos. Indeed, the logistic map appears to capture much of
the essence of a whole class of real-world phenomena, including that of
the transition to turbulence in fluid flows.

Although the basic properties of the logistic map have been studied for
at least forty years, the most profound revelations are due to Mitchell
Feigenbaum's analyses in the mid 1970s, culminating in his universality
theory. Feigenbaum observed that the "route to chaos" as found in the
logistic map in fact occurs (apart from a few mild technical
restrictions) in all first-order difference equations x ,, = f(x,), where
the function f(x) (after a suitable rescaling) has a single maximum on
the unit interval [0,1]. Moreover, the transition to chaos is
characterized by a scaling behavior governed by universal constants
whose value depends only on the order of the maximum of f(x).
Because the properties of the logistic map underlie so much of what
generally goes under the rubric of "chaos theory," we provide a short
overview of the behavior of this simple dynamical system.
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It is ironic that such an intensely computational mathematical
science as chaos theory owes much of its modern origin to
calculations that were performed not on a large mainframe
computer but on a simple programmable pocket calculator, a
Hewlett-Packard HP-65. Feigenbaum likes to point out that had
he not had time to observe each and every step of the evolution of
the logistic map, it is unlikely that he would have been able to see
enough of the embedded “patterns” from which he ultimately
induced his universality theory. An important lesson to be taken
away from this is that minimalist modeling does not necessarily lead
only to trivial observations.

Figure 4. x, versus n for the /ogistic map using four different values of o

3 3

2SN Xn

Definition

The logistic map is a one-dimensional nonlinear discrete difference
equation with a single control parameter, o

X1 =flxn) =0x (1 —xp), 0<x0<1, 0<a<4.

32



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook

As long as the single control parameter, 0, is positive and less than or
equal to four, the orbit of any point x, remains bounded on the unit
interval. Notice that there are two antecedents, x, and x',, for each
point x ,,, so that, like the Bernoulli map, this map is also
noninvertible.

Now consider the behavior of the orbits of the logistic map as a
function of the parameter a. Figure 4 illustrates the fact that the
behavior of this map is strongly dependent on the value of a.

Fixed Point Solutions

We begin by asking whether there are any values of o for which the
system has fixed points. Solving the fixed-point equation

x*=fx)=ox"(1-x"),

we find two such points: x* = x* = 0 and x* = x* ;) = (a-1) /0. In order
for x* ,, to be in the unit interval, we must have that o. > 1. What of the
stability of these two points? As we have already seen in the case of the
Bernoulli map, the divergence of initially close by points is a crucial
issue in the analysis of the dynamical behavior.

Given a fixed point, x*, the subsequent evolution of a nearby point, x*'
= x*+ g, where € << 1, may be determined by substituting x_ = x* + &_
and x,, = x* + €, into the fixed-point equation f(x*) = x* and leaving
only the terms that are linearin € and € ,;:

gnt1 = (1 —2x)e, + O(e2),

where O(g,?) represents terms of order €2 and smaller. We find that,
regardless of the initial point x,, the deviations from the fixed point
x*,, decrease exponentially fast for all a < 1. That is to say, all points
xo € [0, 1] are attracted to the fixed point x* = 0.

At the critical value a = a; = 1, x*, becomes unstable and the
o-dependent fixed point x*; becomes stable. This exchange of
stability between two fixed points of a map is known as a transcritical
bifurcation. By using the same linear-stability analysis as above, we see
that x* ;) remains stable if-1 <a (1 -x*,)) <1, or for all & such that 1 <
o<3.

For a > 3, neither x* = 0 nor x* = 1 - o is stable. Instead, the stable

orbit is a period-2 limit cycle consisting of two points - {x,* x,*} — where
x,* and x,* are each fixed points of the doubly iterated map £ (x) =
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flf(x)]. Ata+ ,/g ~ 3.44949the period-2 attractor loses stability and is
replaced by a stable period-4 orbit.

As a increases still further, the system undergoes an infinite sequence
of successive period doubling "bifurcations: -

® astable period-2™" orbit exists for all a such thato, <o <a, -

* at the nth critical value of o - i.e. at o, — all points of the 2™
cycle simultaneously become unstable, and the system becomes
attracted to a new stable period-2" cycle fora, <a<a,,,

® While the period of the limit-cycles approaches infinity as n — o
, the distance between successive critical a's rapidly decreases:
a,=3.0, a,=3.44949..., o,=3.54409..., o =3.56441..., 0..=3.56876...,
weey 0o = 3.5699456...

Figure 5. Schematic representation of first few bifurcations in the

logistic map
x(t = ©)
A
1 +
1/2
0 > o
[ ]
Universality .
Feigenbaum's important discovery consisted of the following two "
quantitative observations (see figure 5): .

1. Critical Parameter Convergence: Feigenbaum found that the
convergence rate of the critical parameters, @, is geometric; i.e. that
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o, scale as 0, = Ol — €O ™", where N >> 1 and 'c' and '8’ are constants.
In fact,

8 = liMpyeo 5t = 4.6692016091...

This value of 8, known as the Feigenbaum constant, is the same for all
one-dimensional maps f(x), where f(x) has a single quadratic
maximum on the unit interval. For example, while the absolute values
of the set of critical a's - a,’, Q,), ..., O ',... — as calculated for the system
X,,; = o' sin(nx ) will be different from the set of a's computed for the
logistic map, their geometric convergence proceeds according to the
same rate 0.

2. Scaling of Brach Splittings: Define a supercycle to be a cycle, {x*},
such that Hf:l f(x;)=0. In particular, since f,,(x) = 0 only when x =
1/2, we know that the point x = 1/2 must always be an element of a
supercycle. Define d, to be the smallest distance between x = 1/2 and
the nearest other point on the same 2"supercycle. Let & ,define the
new nth critical value of o, 0l < &, < O+ at which x = 1/2 becomes
an element of the 2n-cycle.

Feigenbaum's second observation was that the relative scale of
successive splittings of @1,02,&3,...approaches another universal
constant, A:

A =lmy, e i— =2.5029078750...

The convergence rate of Ofollows the same form as for o:
O, — 0w = ¢/d"where 8 is the same as above and Gle = Qoo .

Behavior for o > a.,

What happens for & > 0.o? An overview is provided in figure 6, which
shows the numerically determined attractor sets for all o in the range
2.9 - 4.0. Note the insert in the lower left corner, which shows a blowup
view of the windowed region within the broad white band in the main
figure.
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Figure 6. Bifurcation plot for the logistic map

" K(m]) 4.A

The general behavior of the logistic map for a > 0l is summarized as
follows:

® the attracting sets for many - but not all — a > &, are aperiodic
and chaotic on various intervals of the unit interval [0,1].

® As a increases, the chaotic intervals merge together by inverse
bifurcations obeying the same 3 and A scalings as in the & < Ol

region, until the attracting set becomes distributed over the
entire unit interval at a = 4.

® There are a large number of "windows" of finite width within
which the attracting set reverts back to being a stable periodic
cycle. Within these windows chaotic and periodic regions are
densely interwoven. The largest such window - a snapshot of
which is shown in the smaller boxed region in the lower left of
figure 6 — corresponds to a stable period-3 cycle and spans the
width 3.8284 ... < a < 3.8415.

® The periodic windows also harbor period-m cycles, where m =3,
5, 6,... that undergo period doubling bifurcations, m -> 2m ->
4m —> ... at a set of critical parameters & &,... that again scale as

36



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook

Op=Qw—cd", with the same universal 8 as in the & < (e
region.

® Other periodic windows harbor period triplings, quadruplings,
etc., occurring at different sets of {G;}, but all of which scale in
the familiar fashion (albeit with different universal constants
5#8.

Two-Dimensional Strange Attractors

"I have not spoken of the aesthetic appeal of strange attractors. These systems of curves,
these clouds of points suggest sometimes fireworks or galaxies, sometimes strange and
disquieting vegetal proliferations. A realm lies here to explore and harmonies to
discover.”  -D. Ruelle

David Ruelle concludes his 1980 The Mathematical Intelligencer [270]
review of strange attractors with this eloquent passage on the often
strikingly beautiful patterns weaved by strange attractors.

Henon Map

One the simplest two-dimensional systems is an analogue of the logistic
equation, introduced by Henon in 1976. It is defined by the equations

JC,,.H = 1 - (Xxﬁ +yn,

Y1 = me

where o and B are constants; o controls the extent of the nonlinearity,
while B controls the degree of dissipation. Note that, unlike the logistic
map, the Henon map is invertible. While noninvertibility is necessary
for chaos in one-dimensional maps, it is not required in
higher-dimensions.

Generally, the sequence of points, (X,¥,), (X,,¥,)5 - (Xp¥;)s - either
diverges to infinity (for x, large) or settles onto an attractor (for (x,,y,)
near the origin). A fixed-point analysis similar to the one performed
earlier for the logistic equation may be carried out here to determine
the behavior of the map as a function of o and B. For example, the

fixed points are easily found to be xi= i{—(l -B)tJ(1-B)? +4a },
and y: = Pxi, where the point (xZ, Bx?) is always unstable and (x3, Bx})
becomes unstable for o > %(1 —-PB)? . For B = 3/10, both fixed points

become unstable for o = o, = 0.3675 and a two-cycle is born. Ato. = a, =
0.9125 the two-cycle attractor becomes unstable and a fourcycle is
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born. As a is increased further, the system undergoes
period-bifurcations obeying the same Feigenbaum constants 8 and A
that describe the period doublings in the logistic equation.

Figure 7 shows four snapshot views of the structure of the Henon
strange attractor for a = 1.4 and B = 0.3. In the figure, the second,
third and fourth plots (counted clockwise starting from the upper left
plot) provide enlargements of the small window regions shown in the
immediately preceding plots. The attractor possesses two noteworthy
properties:

Figure 7. The Henon Attractor (upper left-hand-side). Each
succeeding image is an enlargement of the boxed segment of the
immediately preceding image.

T T

1. Exponential divergence of mearby trajectories: Just as global
space-time CA patterns (see page 75) must be allowed to slowly
emerge over many iteration steps before becoming
recognizable and have a characteristic appearance that is often
difficult if not impossible to predict beforehand from a
knowledge of the CA rule alone, so too do strange attractors
slowly, and in a highly irregular manner, form on a computer
screen. While individual points jump around in an apparently
haphazard fashion, it is only after several hundred have been
plotted that the outline of the underlying attractor becomes
clear. Numerical experiments confirm that the dynamics on
this attractor are indeed chaotic.
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2. Self-Similarity: 'What is most obvious from comparing the
sequence of magnifications of an isolated section of the Henon
attractor as shown figure 7, is its transverse self-similarity, or its
Cantor-set-like structure. Since the map is area-contracting, the
attracting set must have zero area (just as the classical
Cantor-set has zero length); its Hausdorff dimension is
nonintegral, however, which is a characteristic feature of
fractals, see page 50). Moreover, although this may not be clear
from the figure, the Henon attractor has an inhomogeneous
structure. That is to say, the probabilities, p,, for a point of the
attractor to be in the i band in each of the "blown-up” images,
are all different.

Qualitative Characterization of Chaos

What are the criteria by which dynamical systems can be judged to be
chaotic? Suppose you are given a dynamical system, S, or a set of
time-series data of S's behavior of the form

&) = &to), €1, E(E2), - CEN),

where (#;) represents the state of S at time t, and S's state is sampled
every t,, = t. + At time steps for some fixed At. How can you tell from this
time series of values whether S is chaotic? In this section we give four
qualitative criteria:

¢ the time series "looks chaotic”
¢ the Poincare map is space-filling

¢ the power spectrum exhibits broadband noise

® the autocorrelation function decays rapidly

Time Dependence

Using the time series method is both intuitive and easy. The gross
behavior of a system can often be learned merely by studying the
temporal behavior of each of its variables. The system is likely to be
chaotic if such temporal plots are nonrecurrent and appear jagged and
irregular. Moreover, sensitivity to initial conditions can be easily tested
by simultaneously plotting two trajectories of the same system but
starting from slightly different initial states. Figure 8, for example,
shows the divergence of two trajectories for the logistic map with o = 4
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whose initial points - x, = 0.12345 and x,' = 0.12346 - differ only in the
5th decimal place.

Figure 8. Divergence of trajectories for two nearby initial points
(differing by X, - X,' = 10*) for the logistic equation for a = 4.0.
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Poincare Maps

Recall that the Poincare map is a method for visualizing continuous
trajectories by constructing an equivalent discrete-time mapping by a
periodic "stroboscopic” sampling of points along an orbit. Consider a
two-dimensional trajectory in three-dimensional space. The structure
of such a trajectory can be readily identified by plotting its
intersections with a two-dimensional slice through the
three-dimensional space in which it lives. The system is likely to be
chaotic if the discrete point set on the resulting Poincare plot is fractal
or space-filling.

Autocorrelation Function

The autocorrelation function, C(t), of a time series measures the
degree to which one part of the trajectory is correlated with itself at
another part. If a series is completely random in time, then different
parts of the trajectory are completely uncorrelated and the
autocorrelation function approaches zero. Put another way, no part of
the trajectory harbors any useful information for predicting any later
part of the trajectory. As the correlation between parts of a trajectory
increases, parts of a trajectory contain an increasing amount of
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information that can be used to predict later parts and the value of the
autocorrelation function thus increases.

For continuous signals, the autocorrelation function C(t) is defined by
: 1 X . 1 T
C(7) = im7e0 7 [c(®)c(t + 1) dt, where () = {(1) ~ lim 7o 7 [C(0) dt.
0 0

For discrete systems, C(7) is defined by

i=1

C(v) = By . 2 ct)c(ti +7), Where c(t;) = §(t;) — imp_soo 5 §1 @)
J=

A rapid decay (say, with an exponential dropoff) of C(t) is a criterion
for the presence of chaos.

Power Spectrum

If a system is chaotic that means its signal is irregular and aperiodic in
time. A measure that is often used to distinguish between multiply
periodic behavior (that can also appear irregular and complicated)
and chaos is the power spectrum of the signal, P(®). For continuous
systems it is defined by

P() = ¢,

where £(®) is the Fourier-transform of the signal £(t):
T -

&(w) =lim7,e [E(0) € dt.
0

For discrete systems, the Fourier-transform of the signal {(t) is defined
by

Ge=1 ’:’_i(: &(f) ek

In either case, for multiply periodic motion the power spectrum
consists only of discrete lines of the corresponding frequencies.
Chaotic motion, on the other hand, induces broadband noise in P(®),
that is mostly concentrated in the lower frequencies.
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Quantitative Characterization of Chaos

The previous section introduced several qualitative criteria for the
presence of chaos in a dynamical system. In this section we define a set
of quantitative measures of chaos:

® Lyapunov exponents
¢ generalized fractal dimensions

¢ Kolmogorov-Sinai entropy

Lyapunov Exponents

As has been repeatedly stressed, a fundamental property of chaotic
motion is sensitivity to small changes to initial conditions. Initially
closely separated starting conditions evolving along regular dynamical
trajectories diverge only linearly in time. A chaotic evolution, on the
other hand, leads to an exponential divergence in time. Lyapunov
exponents quantify this divergence by measuring the mean rate of
exponential divergence of initially neighboring trajectories.

Consider two initial points of a one-dimensional trajectory — x, and x,’
= X, + € — separated by some small quantity €. Suppose each of these
points evolves according to the map x_,, = f(x ), for some function f.
Figure 9 shows that after N steps, the Lyapunov exponent A(x,)
measures the exponential separation between the Nth iterates of x,
and x,, or between £"(x,) and f" (x,+€), respectively.

Figure 9. Schematic definition of Lyapunov exponent
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From figure 9, we see that

£eM0) = |V (xo + €) — ¥ (xo) |
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which, in the limit as € — 0 and N —> owoyields the following expression
for A(x,):

- A(x0) = liMp-smog0 & log [FE01TE0

= impse & 10g [T F/(x)| = limpye S EN log [P (x)],

where f (%) is the derivative of the function f evaluated at the point x,.
Thus e*®0 is the average factor by which the distance between initially

closely separated points becomes stretched after one iteration. If A <0,
nearby trajectories tend to converge rather than diverge and the

motion is regular, if A > 0, nearby trajectories tend to diverge from one
another and the motion is chaotic.

Figure 10. Lyapunov exponent vs. control parameter a for the logistic

equation
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As an example, consider the logistic map, defined by
Xns1 =0Xn(1 —x,). A straightforward calculation shows that
A =limpy e %Zlogll —2x;|. Figure 10 shows a plot of A vs. o for a in
the range 2.9 - 4.0. Consistent with our earlier observations of the
behavior of this map (see figure 6), we see that (1) A<0 forall a < 0w

, (2) A > 0 for most & > 0L, and (3) that there are multiple windows in
the chaotic regime for which A dips down below zero and the attractor
thus becomes periodic. '
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An n-dimensional system has n one-dimensional Lyapunov exponents,
A Ay ooy Ao Each A measures the rate of divergence in the i™
direction.

Information Theoretic Interpretation

As defined above, the Lyapunov exponents effectively determine the
degree of chaos that exists in a dynamical system by measuring the
rate of the exponential divergence of initially closely neighboring
trajectories. A  suggestive alternative interpretation is an
information-theoretic one. It is, in fact, not hard to see that Lyapunov
exponents are very closely related to the rate of information loss in a
dynamical system.

Consider, for example, a one-dimensional interval [0,1], that is
partitioned into N equal sized bins. Assuming that a point x, is equally
likely to fall into any one of these bins, learning which bin in fact
contains x, therefore constitutes an information gain

Io=-%Llog. L =log N
0=—2 §108y =108,

where log, is the logarithm to the base 2. Now consider a simple linear
one-dimensional map f(x) = a x, where x is in the interval [0,1] and o
> 1. By changing the length of the interval, and thereby decreasing the
effective resolution, by a factor a = | f'(0)l, a single application of the
map f(x) results in an effective information loss

NI N
S[=1,—Io=— E‘l’ wlog, 5+ % {log, = —log, | (0)].

Generalizing to the case when If(x)! depends on position, and
averaging over a large number of iterations, we obtain the following
expression for the mean information loss:

N-1
8l ave = —HMpy e Z log, I (x:)] = Mlog, 2,

where A is the Lyapunov exponent. We thus see that, in one
dimension, A measures the average loss of information about the
position of a point in [0,1] after one iteration.

Numerical Computation

There are several useful methods for computing the Lyapunov
exponents from experimental time series data, including the so-called
"pullback-technique” by Benettin, et. al. [22], a method proposed by
Eckman and Ruelle [85] and an algorithm that is particularly well
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suited for the analysis of experimental data suggested by Wolf and
Vastano [320]. To illustrate the general methodology we briefly discuss
the latter algorithm.

The first step is to construct an attractor from the experimental data

using the embedding technique . That is, construct from a time series {&;}
a set of points of the form

Xi = €@, &t — 1), ... §(t: — (m — 1)1)),

where T is a fixed time delay. This time-delayed embedding
reconstruction assumes that if the embedding dimension m is large
enough, the behavior of whatever system is responsible for generating
the particular series of measurements can be described by a finite
dimensional attractor. In principle, the choice of t is arbitrary, though
criteria for its selection exist.

Figure 11 shows a schematic illustration of the Wolf algorithm to
compute the largest Lyapunov exponent, A_..

The Wolf algorithm follows a pair of initially nearby points on the
attractor. Begin with a data point y(t,) and its nearest neighbor z(t,),
which are a distance d, = | z,(t,) - y(t,) | apart. These two points are
evolved by time increments At until the distance d,' between them
exceeds some threshold value & When that occurs, the first
incremental data point y(t;) is retained and a new neighbor z(t,) is
sought such that the distance d, = |y(t,) - z,(t,) | is again less than e
and such that z,(t)) lies as closely as possible in the same direction
from y(t,) as z,(t,).

Figure 11. Schematic illustration of the Wolf algorithm for computing
the largest Lyapunov exponent
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This procedure is continued until the fiducial trajectory ¥ has been
followed to the end of the time series. The largest Lyapunov exponent
of the attractor, A__, is then estimated as

‘max’

Aomax = 'S Tog,,
max =" NAt 5 ogZd,’

where M is the number of replacements and N is the total number of
time steps for which the fiducial trajectory ¥ has been followed. The
presence of chaos in a time series can now be confirmed by finding
that A > 0. In practice, a few thousand attractor points suffice to
estimate A, to within 10% of the true value when the attractor is less
than three dimensional [320].

Fractal Dimensions

While Lyapunov exponents, as discussed in the last section, confirm
the presence of chaos by quantifying the magnitude of the exponential
divergence of initially neighboring trajectories, they do not provide
any useful structural or statistical information about a strange attractor.
Such information is instead provided by various fractal dimensions.

Recall that fractals are geometric objects characterized by some form
of self-similarity; that is, parts of a fractal, when magnified to an
appropriate scale, appear similar to the whole. Fractals are thus objects
that harbor an effectively infinite amount of detail on all levels.
Coastlines of islands and continents and terrain features are
approximate fractals. A magnified image of a part of a leaf is similar to
an image of the entire leaf. Strange attractors also typically have a
fractal structure.

Loosely speaking, a fractal dimension specifies the minimum number
of variables that are needed to specify the fractal. For a
one-dimensional line, for example, say the x-axis, one piece of
information, the x-variable, is needed to specify any position on the
line. The fractal dimension of the x-axis is said to be equal to 1.
Similarly, two coordinates are needed to specify a position on a
two-dimensional plane, so that the fractal dimension of a plane is equal
to 2. Genuine (i.e. interesting) fractals are objects whose fractal
dimension is noninteger.

Box Dimension

Consider the simplest example of a fractal dimension, sometimes
called the box dimension, D, .. Suppose we want to compute the box
dimension for a set of points in a d-dimensional space. Define N(g) to
be the minimum number of d-dimensional cubes of volume &? that are
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necessary to completely cover the set. The box dimension is then
defined as

. Tog[N

D,,, essentially tells us how much information is needed to specify the
set to within an accuracy €. In practice, one obtains values of N(g) for a
variety of ¢'s and estimates D, from the slope of a plot of log[N(g)]
versus log (1/¢).

This expression for D, gives the expected result for simple sets. If the
set in question consists of a single point, for example, we know that
one box of any size € > 0 suffices to cover the set, so that D, =
log(1)/log(1/¢) = 0, as expected. Similarly, if the set in question is a
line segment of length L=1, then we can take N(g) = 1/e so that D, , =
log(1/€)/log(1/€) = 1. In fact, for the usual d-dimensional Euclidean
sets, the box dimension equals the topological dimension. One of the
simplest examples of a set for which the two measures differ is the
so-called Cantor fractal.

Figure 12 shows the first four steps in the construction. The first step
consists of a line of length L=1. Call this set S,. At the next step, set S, is
obtained by deleting from S, its middle third. At the third step, the set
S, is obtained from S, by deleting the middle third segments from each
of the two disjoint pieces making up S,. Continue in this fashion, at
each step n deleting the middle third segments from each of the
disjoint pieces making up the set obtained on the previous step, n-1.
The Cantor fractal is the set that remains in the limit as n — .

Figure 12. First four steps of the construction of the Cantor fractal
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— its box dimension is greater than zero. Since at the n" step of the
construction N(g) = 2" balls of size € = (1/3)" are needed to cover the
set, we see that

Diox(Cantor) = lim e :—'f%—; ~ 0.6309.

As another example, consider the Feigenbaum attractor of the logistic
equation (see page 34) for 0 = Qo = 3.56994... One can show that the
trajectory of points at this value of o is a fractal with box dimension
Dyox = 0.5388.

Note that while D, , clearly depends on the metric properties of the
space in which the attractor is embedded - and thus provides some
structural information about the attractor - it does not take into
account any structural inhomogeneities in the attractor. In particular,
since the box bookkeeping only keeps track of whether or not an
overlap exists between a given box and the attractor, the individual
frequencies with which each box is visited are ignored. The
inhomogeneities of the Henon attractor, for example (see page 41),
and the information that such inhomogeneities might convey about
the attractor, are completely ignored by D, . This oversight is
corrected for by the so-called information dimension, which depends on
the visitation frequencies of points on the attractor.

Information Dimension

Just as for the box dimension, first partition the d-dimensional space
into boxes of volume &’. The probability of finding a point of an
attractor in box number i, where i = 1, 2, ..., N(¢), is p,(g) = N;(€) /N,
where N;(g) is the number of points in the ith box and N is the total
number of points. p;(g) is thus the relative frequency with which the i®
box is visited, and ranges from zero (when N;(€)=0) to one (when
N;(g) =N).

The amount of information required to specify the state of the system

to within an accuracy € (or, equivalently, the information gain in
making a measurement that is uncertain by an amount €) is given by

16)=~% pie)logpi(e).

The information dimension, D,, is then defined as

Ke)
log(1/e)”

D;=lim¢_0

Notice that if the set is contained entirely in a single box - say, the 13"
box - then p,(€) = 1, and p,(g) = 0 for all i # 13. Thus D, = 0. On the
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other hand, if each box is visited equally often - that is, if p,(e) =
1/N(g) for all i — than I(¢) = log[N(g)] and D, = D,_,. For unequal
probabilities, I(g) <log[N(g)], so that, in general, Dj < Dy, .

Correlation Dimension

Another important measure is based on the correlation integral C(g)
introduced by Grassberger and Procaccia in 1983. C(g) measures the
probability of finding two points of an attractor in a box of size &:

B
: p? = the probabiljty that two points lie within the box &4

= the probability that two points are separated by a distance smaller than €

= HMp e ;vl—i{number of pairs ij whose distance is less than €}
= limN_m #EG(S— |)-Ei—3(.2j‘)
ij

= C(g) = correlation integral,

where |...| denotes the Euclidean distance, and 6(x) is defined by
0(x)=1 for x > 0 and 6(x)=0 otherwise. C(g) essentially counts the
number of pairs of points falling within a hypersphere of radius € that
is centered on each point (and normalizes by a factor 1/N?). The
correlation dimension, D__, is then defined as

loglC@ _ 1; log[Z p?]
€30 og(ire) — 0 Tog(ife)

Dcorr = lim

It can be shown that 0 < Doy < Dy < Dy, .

The correlation integral and correlation dimension can be used to
determine two additional properties from experimental time series
data:

® the embedding dimension d;: the dimension d; in the time series
(t) = {€(t), C(t: + ), s C(t; + (d5 — 1)T)} above which D,
no longer changes is the (minimal) embedding dimension of the
attractor.

o distinction between deterministic chaos and random noise: suppose
there is a strange attractor embedded in d-dimensional space
and an external random noise is added. Each point on the
attractor becomes surrounded by a uniform d-dimensional
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cluster of points. Suppose the radius of this cluster is € .. Then
for € >> ¢ .., the correlation integral C(g) counts these clusters
as points and the slope of the log [C(g))] versus log(e) plot
yields the correlation dimension of the attractor. For e < €,
most of the points counted by C(g) fall within the uniformly
filled d-dimensional clusters and the slope of the log [C(g))]
versus log(€) plot crosses over to d.

Hierarchy of Generalized Fractal Dimensions

The three fractal dimensions discussed in the previous section — the
box dimension, D, , the information dimension D, and the
correlation dimension, D — are actually three members of an infinite
hierarchy of generalized fractal dimensions, D, that characterize an
attractor:

B(g) g
log[ X pi(e)]

i=1

-1 a =1
Dq = lime50 I-g log(lfe)

where p;(€) is, as before, the probability of finding a point of an
attractor in the i" box of size €, wherei=1, 2, ..., B(g).

It can be shown that D__, corresponds to the box dimension, D, to the
information dimension, and D, to the correlation dimension. It can
also be shown that Dq is a non-decreasing function of q; i.e. that

Dy <D forall q, q' such that g > ql.

Lyapunov Dimension

An attempt to link a purely static property of an attractor — as
embodied by its box dimension, D, - to a dynamic property, as
expressed by its set of Lyapunov exponents, {A}, was first made by
Kaplan and Yorke [168]. Defining the Lyapunov dimension, D,, to be

where j denotes the largest 1 such that Zj-r__l A; 20, the Kaplan-Yorke
conjecture is that D, = D,. Although this equality seems to be satisfied
exactly only for completely homogeneous attractors, it is often
approximately satisfied by inhomogeneous attractors as well. Because
the calculation of the Lyapunov exponents li is relatively easy, this
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simple relation has proven to be useful for obtaining quick
characterizations of strange attractors.

. Kolmogorov-Sinai Entropy

The discussion has so far focused exclusively on the amount of
- information gained from a single “snap-shot' view of an attractor. A
useful alternative viewpoint is provided by asking about the rate of
information gain per unit time achieved in observing the system over a-
period of time. If the dynamics are simple, the asymptotic information
gain is zero since new measurements provide no new information; if
the system is behaving chaotically, on the other hand, new
measurements are constantly needed in order to update our
knowledge of the system. The Kolmogorov-Sinai entropy (or metric
entropy), K, gives an upper bound on this information acquisition rate.

To define K, partition a d-dimensional phase space into boxes of
volume €%, {b,, b,,..., by}. Assuming that the state of the system is
measured in intervals At = 7 units, define p(b,, b,,..., by ) to be the joint
probability that X(¢=0) is in box b,, X(f=71) is in box b,,..., and
%(t = Nr) is in box by. The Shannon information, I, stored in this
string is proportional to the information needed to locate the system
on a trajectory (b, b,,..., by) with precision € (if one knows a priori
only the probabilities p(b,, b,,..., by)), and is given by

IN=— z p(bl,bz,...,bN)Ing(b1,b2, ...,bN).

by,by,....bN

The additional information needed to predict which box
x(t=(N+ 1)) will be in, given I, is given by L, - I, which is
therefore a measure of our information gain about the state of the
system from time t = NT to t = (N+1)1. The Kolmogorov-Sinai entropy
is the average rate of this information gain:

. . . M_l
K= llm‘;_.)o hme—>0 hmM—-)oo ﬁl,; NE_O(IN-*-I _IN)’

K = lim; 0 limg 0 limpssoo 712 by D p(b1,by,....by-1)ogp(by, b, ..., by-1)

1,b2,...,bM_l

The limit € = 0 (which must be taken after the M — olimit) makes K
independent of a particular partitioning of the phase space. For
discrete maps with discrete time steps T = 1, the limit T —> Ois omitted.
It is easy to see that K = 0 for regular trajectories, while completely
random motion yields K = . Deterministic chaotic motion, on the
other hand, results in K being both finite and positive. A method for
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deriving K of strange attractors from scalar time series is given by
Fraser [100].

Time-Series Forecasting and Predictability

As has been repeatedly stressed throughout this discussion, chaos
theory tells us that a chaotic dynamical system is sensitive to initial
conditions. This, in turn, implies that chaos precludes long-term
predictability of the behavior of the system. The essence of chaos, after
all, is the unpredictability of individual orbits; thinks of the random
sequence of heads and tails from tosses of an unbiased coin or the
dripping of a faucet. On the other hand, suppose a system's orbit lies
on a strange attractor. If we know something about this attractor - its
general shape, for example, perhaps along with an estimate of the
visitation frequencies to its different parts — this clearly provides some
information about what the deterministic (albeit chaotic) system is
doing. This added information, in turn, may be sufficient to allow us to
make predictions about certain short-term (and long-term) behavioral
trends of the system.

Chaotic dynamics is often misinterpreted to mean random dynamics.
Strictly speaking, since chaos is spawned from a deterministic process,
its apparent irregularity stems from an intrinsic magnification of an
external uncertainty, such as that due to a measurement of initial
conditions. Sensitivity to initial conditions amplifies an initially small
uncertainty into an exponentially large one; or, in other words,
short-term determinism evolves into long-term randomness. Thus, as
Eubank and Farmer® point out, the important distinction is not
between chaos and randomness, but between chaotic dynamical
systems that have low-dimensional attractors and those that have
high-dimensional attractors. For example, if a time series of evolving
states of a system is generated by a very high dimensional attractor (or
if the dynamics is modeled in a state space whose dimension is less
than that of the attractor), then it will be essentially impossible to
gather enough information from the time series to exploit the
underlying determinism. In this case, the apparent randomness will in
fact have become a very real randomness, at least from a predictability
standpoint. On the other hand, if the time series is generated by a
relatively low dimensional attractor, it is possible to exploit the
underlying determinism to predict certain aspects of the overall
behavior. A powerful technique to make the underlying determinism
of a chaotic time series stand out is the so-called embedding technique.

6 S. FEubank and D. Farmer, "An introduction to chaos and
randomness,” pages 75-190 in [159].
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State-Space Reconstruction via Embedding

Consider some realworld data, tabulated as a time series,

E = {&(t1),E(2), ...,E(tn)} . The data may represent observations of the
closing prices of the Dow Jones Industrials, annual defense
expenditures, or combat losses on the battlefield.

The embedding technique is a method of reconstructing a state space
from the time series. It assumes that if the embedding dimension is
large enough, the behavior of whatever system is responsible for
generating the particular series of measurements can be described by a
finite dimensional attractor. Its main strength lies in providing detailed
information about the behavior of degrees-offreedom of a system
other than the ones that are directly observed. Estimates of the error
introduced by extrapolating the data can also be made.

The embedding technique consists of creating the state vectors x; from
€ according to

xi=EW:),Eti + 1), ... E(ti + (m— 1))

where 7 is a fixed time delay. In principle, the choice of t is arbitrary,
though criteria for its selection exist. If the dynamics takes place on an
attractor of dimension d, then a necessary condition for "uncovering”
the underlying determinism is 72 d. It can be shown that if r is the
dimension of a manifold containing the attractor, than almost any
embedding in d = 2r + 1 dimensions will preserve the topological
properties of the attractor. Of course, the embedding technique does
not work for all time series, and the amount of information it uncovers
about the underlying determinism for a given time series may be
sufficient only to yield very short-term predictions. Nonetheless, the
technique has proven to be very powerful in uncovering patterns in
data that are not otherwise (obviously) visible. A detailed discussion is
given in reference [54].

Figure 13 shows an example of the kind of predictions that are possible
with the embedding technique. Given 1000 data points (not shown) of
the chaotic fluctuations in a farinfrared laser (approximately
described by three coupled nonlinear ordinary differential equations)
from which to learn the underlying system's dynamics, Sauer [275]
uses a modified embedding technique to predict the continuation of
the time series for 200 additional time steps. Figure 13 (a-d) shows four
continuations of length 200, each with a different initial point. In each
of the plots, the solid curve represents the predicted continuation, and
the dashed curve represents the true continuation.
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Figure 13. Four continuations of a chaotic time series using the
embedding technique; solid lines represent predicted values, dashed
lines represent the actual data
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Chaotic Control

Suppose you have a physical system that exhibits chaos. Is there a way
to still use the system - that is, to allow the system to evolve naturally
according to its prescribed dynamics - but in such a way as to eliminate
that system's chaotic behavior? One way, of course, might be to
physically alter the system in some (possibly costly) way. But what if
such a restructuring is not an option? What if the only available option
is to slightly "tweak"” one of the system's control parameters?

It has recently been shown by Ott, et. al. [237] and Romeiras, et. al.
[268] that the extreme sensitivity of chaotic systems to small
perturbations to initial conditions (the so-called "butterfly effect”) can
be exploited to stabilize regular dynamic behaviors and to effectively
"direct” chaotic trajectories to a desired state. The critical idea is that
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chaotic attractors typically have embedded within them a dense set of
unstable periodic orbits. That is to say, an infinite number of unstable
periodic orbits typically co-exist with the chaotic motion. By a periodic
orbit, we mean an orbit that repeats itself after some finite time. If the
system were precisely on an unstable periodic orbit, it would remain
there forever. Such orbits are unstable because the smallest
perturbation from the periodic orbit (as might, for example, be due to
external random noise) is magnified exponentially in time and the
system orbit moves rapidly away from the periodic orbit. The result is
that while these unstable periodic orbits are always present, they are
not usually seen in practice. Instead, one sees a chaotic orbit that
bounces around in an apparently random fashion. Ironically, chaotic
control is a capability that has no counterpart in nonchaotic systems
The reason is that the trajectories in nonchaotic systems are stable and
thus relatively impervious to desired control.

The basic strategy consists of three steps:

¢ find some unstable periodic orbits embedded within the.chaotic
motion

® examine these orbits to find an orbit that yields an improved
system performance

® apply small controlling perturbations to direct the orbit to the
desired periodic (or steady state) motion

Once a desired unstable periodic orbit has been selected, the nature of
a chaotic orbit assures us that eventually the random-appearing
wanderings of the chaotic orbit will bring it close to the selected
unstable periodic orbit. When this happens the controlling
perturbations can be applied. Moreover, if there is any noise present,
these controlling perturbations can be applied repeatedly to keep the
trajectory on the desired orbit.

We make a few general comments:

1. Chaotic control is applicable to both continuous and discrete
dynamical systems.

2. Chaos can be controlled using information from previously
observed system behavior. Thus it can be applied to
experimental (i.e. real-world) situations in which no model need
be available to define the underlying dynamics.

3. While chaotic control applies strictly to systems that are
described with a relatively few variables, it should be
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remembered that the behavior of many high (and even
infinite) dimensional systems is often described by a low
dimensional attractor.

4. Before settling into a desired controlled orbit the trajectory
goes through a chaotic transient whose duration diverges as the
maximum allowed size of the control perturbations approaches
zero

5. Small noise can result in occasional bursts in which the orbit
strays far from the desired orbit

6. Any number of different orbits can be stabilized, where the
switching from one to another orbit is regulated by
corresponding control perturbations

A recent survey article [284] lists applications for communications (in
which chaotic fluctuations can be put to use to send controlled,
pre-planned signals), for physiology (in which chaos is controlled in
heart rhythms), for fluid mechanics (in which chaotic convection
currents can be controlled) and chemical reactions. As another recent
example, a few years ago NASA used small amounts of residual
hydrazine fuel to steer the ISEE-3/ICE spacecraft to its rendezvous
with a comet 50 million miles away. This was possible because of the
sensitivity of the three-body problem of celestial mechanics to small
perturbations.

Brief Overview of Method

Consider a discrete d-dimensional dynamical system, Z,.; = F(Z,, p),

, where Z,, is a d-dimensional vector describing the state of the system
at time-step "n" and p is a control parameter (which will be used for
inducing "control perturbations”). This control parameter is adjustable
but is restricted to within a range p" -8 < p < p + §, where p’ is the
nominal value for which the system has a chaotic attractor, and & is
some small number. The problem is now to vary p in such a way that
for almost all initial conditions in the basin of the chaotic attractor, the
system will converge onto the desired periodic orbit embedded within
the attractor. For simplicity, we focus attention on stabilizing fixed

- point (i.e. period one) orbits; generalization to higher period orbits is
straightforward [268].

The first t step is to approx1mate the dynamics near the fixed point,

labeled Z* (so that z F(Z*, P*)). For values of p close to p’, this
approximation is given by the linear map
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Zn1 = Z) = A-(Zn—-Z°)+ B(p- 1),

> where A= OFIOZ is a d-by-d dimensional jacobian matrix and

B= aFlap is a d-dimensional column vector. Both A and B are
evaluatedatZ=Z"and p=p'.

v .

- Assuming that we can tweak the parameter p on each iteration, we
replace p by p, according to the following linear prescription:

po> pn=p" —KT-(Z,- 2,

where K is a constant d-dimensional column vector, and K" is its
transpose. The 1-by-d matrix K must be determined so that the fixed
point Z*(p*) becomes stable Substituting this value of p, into the

above expression for (Zn+l -z ) we find
8Zm1=(A~B-K")8Z,,

where 8Z, =Z, —Z". Itis clear that the fixed point will be stable if
the matrix A — B - K7 only has eigenvalues whose modulus is less than

one. The "pole placement solution” to this problem is well known in
the literature, and is summarized by Romeiras, et. al. [268].

Lessons of Nonlinear Dynamics and Chaos

The major lesson of nonlinear dynamics is that a dynamical system
does not have to be "complex" or to be described a large set of
equations, in order for the system to exhibit chaos - all that is needed
is three or more variables and some embedded nonlinearity.

Basic lessons of nonlinear dynamics and deterministic chaos include:

® chaos is pervasive — apparently random behavior in some
nonlinear systems can in fact be described by deterministic
(non-random) chaos

¢ nonlinear dynamics teaches us to appreciate the wide range of
qualitatively different dynamical behaviors that can be generated
by feedback in real systems

*® nonlinear systems generally tend to exhibit bifurcations ~ small
changes in parameters can lead to qualitative transitions to new
types of behaviors
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® small perturbations can induce large changes

¢ typical nonlinear systems have multiple basins of attraction, and
the boundaries between different basins can have very
complicated fractal forms

¢ dynamical behavior depends on location in phase space

® an appreciation of what transitions to expect when one adds
feedback to a system

® suggest ways in which to selectively adjust feedback

* an understanding that while individual trajectories behave in an
apparently erratic manner, the attractors themselves offer
information about the long-term trends of a system

¢ techniques such as time-delayed embedding allow short-term
prediction even without any prior knowledge of an underlying
model or set of equations

® attractors embody information about certain recurrent aspects of
the long-term behavior of a system

¢ the relative time that an orbit spends visiting various parts of an
attractor yields useful visitation probabilities

® the presence of multiple attractors may be exploited for strategic
purposes

e the information dimension can be used to estimate the minimal
number of variables that are needed to describe the system

e that there are dense paths of trajectories on a chaotic attractor
implies that chaos can be exploited to control dynamics that are
otherwise erratic and unpredictable

¢ chaos often results when a dynamical system is not allowed to
relax between events

e the universality of certain nonlinear phenomena implies that we *
may be able to understand many disparate systems in terms of a
few simple paradigms and models .

Mayer-Kress [38] points out that a failure to learn the lessons of chaos
theory could lead to:
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® the illusory belief that successful short-term management allows
total control of a system

e difficulty, or even impossibility, of making a diagnosis from
available short-term data

¢ application of inappropriate control mechanisms that can
actually produce the opposite of a desired effect

Tools for the Decision Maker?

Nonlinear dynamics makes clear that chaotic dynamics ought not be
misinterpreted to mean random dynamics. The most important lesson
of deterministic chaos is that dynamical behavior that appears to be
chaotic or random often contains an embedded regularity. If this
embedded regularity can be uncovered and identified, it can
potentially be exploited by the decsions maker:

® Short Term Predictions. Given sufficient data, time series analysis
permits one to make short-term predictions about a system's
behavior, even if the system is chaotic. Moreover, these
prediction can be made even when the underlying dynamics is
not known.

¢ Long-term Trends. If the attractors of a system are known or can be

- approximated (say, from available historical time series data),
long-term trends can be predicted. Knowledge about visitation
frequencies of points on an attractor provides insight into the
probabilities of various possible outcomes. Lyapunov exponents
quantify the limits of predictability.

® Qualitative Understanding of the Baitlefield. The information
dimension can be used to estimate the minimum number of
variables needed to describe a system. Moreover, if a system can
be shown to have a small non-integer dimension, it is probable
that the underlying dynamics are due to nonlinearities and are
not random [231].
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Complex systems

Introduction

"Time is a river which sweeps me along, but I am the river; it is a tiger which
destroys me, but I am the tiger; it is a fire which consumes me, but I am the
fire." — Jorge Luis Borges

What are complex systems? There are examples of complex systems
just about everywhere we look in nature, from the turbulence in fluids
to global weather patterns to beautifully intricate galactic structures to
the complexity of living organisms. All such systems share at least this
one property: they all consist of a large assemblage of interconnected,
mutually (and typically nonlinearly) interacting parts. Moreover, their
aggregate behavior is emergent. That is to say, the properties of the
"whole" are not possessed by, nor are they directly derivable from, any
of the "parts” — a water molecule is not a vortex, and a neuron is not
conscious. A complex system must therefore be understood not just in
terms of the set of components out of which it is constructed, but the
topology of the interconnections and interactions among those
components.

Gases, fluids, crystals, and lasers are all familiar examples of complex
systems from physics. Chemical reactions, in which a large number of
molecules conspire to produce new molecules, are also good
examples. In biology, there are DNA molecules built up from amino
acids, cells built from molecules, and organisms built from cells. On a
larger scale, the national and global economies and human culture as
a whole are also complex systems, exhibiting their own brand of global
cooperative behavior. One of the most far-reaching ideas of this sort is
James Lovelock's controversial "Gaia" hypothesis, which asserts that the
entire earth -~ molten core, biological ecosystems, atmospheric weather
patterns and all - is essentially one huge, complex organism, delicately
balanced on the edge-of-chaos.

Perhaps the quintessential example of a complex system is the human
brain, which, consisting of something on the order of 10" neurons
with 10° - 10* connections per neuron, is arguably the most "complex"
complex system on this planet. Somehow, the cooperative dynamics of
this vast web of "interconnected and mutually interacting parts”
manages to produce a coherent and complex enough structure for the
brain to be able to investigate its own behavior.

The emerging new sciences of complexity and complex adaptive
systems explore the important question of whether, or to what extent,
does the behavior of the many seemingly disparate complex systems
found in nature - from the very small to the very large - stem from the
same fundamental core set of universal principles.
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References include monographs (Kauffman [171], Holland [144],
Mainzer [205], Weisbuch [316]), popularizations (Lewin [196],
Waldrop [311], and Gell-Mann [109]), conference proceedings
(Cowan, et. al. [60], Varela [307], Yates [326]) and a series of lecture
notes from the Santa Fe Institute ([159], [227]-[230]).

Short History

Table 4 shows a brief chronology of some of the milestone events in
the study of complex systems.

Whenever a new field emerges, many different individuals contribute
to its development. This is of course also true of complex systems
theory, yet four persons stand out as originating and shaping much of
the field: Alan Turing, John von Neumann, Stephen Wolfram and
Chris Langton.

Turing, in 1936, published a landmark proof of what has come to be
known as the Halting Theorem. Turing's theorem fundamentally limits
what one is able to know about the running of a program on a
computer by asserting that there is in general no way to know in
advance if an arbitrary program will ever stop running. In other words,
there is, in general, no quick and dirty short-cut way of predicting an
arbitrary program's outcome; this is an example of what is called
computational irreducibility. About five decades later, Wolfram suggested
that computational irreducibility is actually a property not just of
computers, but of many real physical systems as well.

Cellular automata were conceived in 1948 by John von Neumann,
whose motivation was in finding a reductionist model for biological
evolution. His ambitious scheme was to abstract the set of primitive
logical interactions necessary for the evolution of the complex forms of
organization essential for life. In a seminal work, completed by Burks,
von Neumann followed a suggestion by Ulam to use discrete rather
than continuous dynamics and constructed a two-dimensional
automaton capable of selfreproduction. Although it obeyed a
complicated dynamics and had a rather large state space, this was the
first discrete parallel computational model formally shown to be a
universal computer (which implies, in turn, that it is also computationally
irreducible). Twenty years later, the mathematician John Conway
introduced his well-known Life game, which remains among the
simplest known models proven to be computational universal.

Other important historical landmarks include the founding, in 1984,
of the Santa Fe Institute, which is one of the leading interdisciplinary
centers for complex systems theory research; the first conference
devoted solely to research in cellular automata (which is a prototypical
mathematical model of complex systems), organized by Wolfram and
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Toffoli at MIT in 1986; and the first artificial life conference, organized

| by Chris Langton at Los Alamos National Laboratory, in 1987.

Table 4. Some historical developments in the study of complex

|
. systems
‘ Year | Researcher Discovery
} . 1936 Turing formalized concept of computability; universal
- turing machine
1948 | von Neumann |{wanted to abstract the logical structure of life;
introduced self-reproducing automata as a means
towards developing a reductionist biology
1950 Ulam proposed need for having more realistic models
for the behavior of complex extended systems
1966 Burks completed and described von Neumann's work
1969 Zuse introduced concept of "computing spaces,” or
digital models of mechanics
1970 Conway introduced two-dimensional cellular automaton
Liferule
1977 Toffoli applied cellular automata directly to modeling
physical laws
1983 Wolfram wrote a landmark review article on properties of
cellular automata that effectively legitimized the
field as research endeavor for physicists
1984 - Santa Fe Institute founded, serving as a
pre-eminent center for the interdisciplinary study
of complex systems
1986 | Toffoli, Wolfram |first cellular automata conference held at MIT,
Boston
1987 Langton first artificial life conference held at the Santa Fe
Institute

Ants and brains ... and combat forces?
Achilles: Familiar to me? What do you mean? I have never looked
at an ant colony on anything but the ant level.
| Anteater: Maybe not, but ant colonies are no different from brains
1 in many respects...
| — Douglas Hofstadter, Godel, Esher, Bach
M Much has been written about how insect "societies" — with their

complex hierarchies of function and responsibility ~ often exhibit
intelligent-like behavior. Consider the massive mounds built by the
termite Macrotermes. The heat generated within these mound is carried
upwards via a central air duct where it then travels back down along
narrow channels lying close to the surface and where it is cooled and
oxygen and carbon dioxide are exchanged, just as in a lung. Such
mounds, as whole, act as air-conditioning system. Although these

} mounds can be likened to human buildings, in that they are clearly
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Collectivism

“constructed for the well-being and comfort of its occupants, they are

fundamentally different in that they are not engineered. That is to say,
no one of their builders ever has any global conception of the
structure before it is completed. The mounds emerge from the
local-rule governed behavior of tens of thousands of interacting worker
termites. The "swarm intelligence” responsible for the structure is itself
an emergent collective property of the termite society as a whole, and
is a property clearly not possessed by any of the society's non-intelligent
constituents.

Just as ant and termite colonies and brains share many nontrivial
collective properties, it can also be argued that there are strong
analogies between these "social mind" systems and the self-organizing
dynamics of combat forces:

¢ the behavior of individual elements (whether they be ants,
neurons or infantrymen) yields little information about the
properties or progress of the "collective”

® the global dynamics of each type of system stems from the
cooperative nonlinear interaction of individual elements with
the environment

¢ the global behavior of each system is relatively insensitive to the
removal of a small number of its individual elements

® each system appears collectively to be "driven," at times, by forces
non existent and/or non-acting at their constituent levels (think
of the military historian's wuse of phrases like
"shifting-momentum” and "tempo-of-battle” to describe
predominantly "high-level” activity on the battlefield)

The study of complex systems is not so much a well-developed
methodology that comes armed with ready-made IMSL-like algorithms
and software routines, as much as a new philosophy, or a new way of
looking at some (sometimes very old) problems. The term collectivism
has sometimes been used to distinguish this philosophy from the more
traditional "top down" and "bottom up" philosophies that it embodies.

Collectivism embodies the belief that in order to properly understand
complex systems, such systems must be viewed as coherent wholes
whose open-ended evolution is continuously fueled by nonlinear
feedback between their macroscopic states and microscopic
constituents. It is neither completely reductionist (which seeks only to
decompose a system into its primitive components), nor completely
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synthesist (which seeks to vsynthesize the system out of its constituent
parts but neglects the feedback between emerging levels).

Figure 14. Feedback between local and global levels = Collectivism

Global Dynamics and S ru cture

As an example of the importance of collectivism, consider a natural
ecology. Each species that makes up an ecology composed of a large
number of diverse species, co-evolves with other members of the
ecology according to a fitness function that is, in part, itself a function
of the emerging ecology. Individual members of each species
collectively define a (part of the) co-evolving ecology; the ecology, in
turn, determines the fitness-function according to which its constituent
parts evolve (see figure 14). It is this nonlinear feedback between the
information describing individual species (or the system's microscopic
level) and the global ecology (or the system's macroscopic level) that
those species collectively define that determines the temporal
evolution - and identity — of the entire system.

Collectivism is thus distinct from both the top-down reductionist
approach traditionally favored by most physicists (system as a simple
edifice of its microscopic parts), and the more recent neural-netlike
bottom-up approach favored by connectionists (system as a synthesis of
its constituent parts). The nonlinear interlevel feedback loop that
makes up the collective is what makes a traditional linear analysis of
such systems difficult, if not impossible. "Analysis" proceeds from the
assumption that in order to understand a system one must first break it
up into its constituent parts. Understanding then comes from the
knowledge gained by reconstructing the system. But for systems whose
dynamics depend critically on interaction between parts, analysis often
misses the essential characteristics of the whole system. "Synthesis” is
the complementary act of putting the individual pieces together in

65




Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook

order to understand what they do collectively. Understanding complex
synthesis requires that both analysis and synthesis be done.

Self-Organization

Self-organization is a fundamental characteristic of complex systems. It
refers to the emergence of macroscopic nonequilibrium organized
structures, and is due to the collective interactions of the constituents
of a complex system as they react and adapts to their environment.
There is no God-like "oracle" dictating what each and every part ought
to be doing; parts act locally on local information and global order
emerges without any need for external control.

At first sight, self-organization appears to violate the Second Law of
Thermodynamics, which asserts that the entropy S of an isolated
system never decreases (or, more formally, dS/ dt> 0); see figure 15-a.
Since entropy is essentially a measure of the degree of disorder in a
system, the Second Law is usually interpreted to mean that an isolated
system will become increasingly more disordered with time. How, then,
can structure emerge after a system has had a chance to evolve?

Fivgure 15. Schematic of /solated and Nonisolated Systems

Isolated Nonisolate ) )
System ‘ System

(a) (b)

Environment

Upon closer examination, we see that self-organization in complex
system does not really violate the Second Law. The reason is that the
Second Law requires a system to be isolated; that is, it must not
exchange energy or matter with its environment. For mnonisolated
systems consisting of noninteracting or only weakly interacting
particles (see figure 15-b), the entropy S consists of two components:
(1) an internal component, S;, due to the processes taking place within
the system itself, and (2) an external component, S, due to the
exchange of energy and matter between the system and the
environment. The rate of change of S with time, dS/dt, now becomes
dS/dt = dS,/dt + dS,/dt. As for an isolated system, dS;/dt>0. But
there are no constraints on dS./dt. If dS,/dt is sufficiently less than
zero, the overall entropy of the system can itself decrease. Thus, the
entropy of a nonisolated system of noninteracting or only weakly
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interacting particles can decrease due to the exchange of energy
and/or matter between the system and its environment.

The situation is more complicated for nonisolated systems consisting

. of strongly interacting particles and when the system is no longer in
equilibrium with the environment. Kauffman [171] notes that the
"second law really state that any system will tend to the maximum
a disorder possible, within the constraints due to the dynamics of the
-

system."

Emergence

Central to the general science of complexity is the concept of
emergence. Emergence refers to the appearance of higher-level
properties and behaviors of a system that — while obviously originating
from the collective dynamics of that system's components — are neither
to be found in nor are directly deducible from the lowerlevel
properties of that system. Emergent properties are properties of the
"whole" that are not possessed by any of the individual parts making up
that whole.

One of the simplest, and ubiquitous, examples of emergence is
"temperature,” as read by a conventional thermometer. While
temperature is a perfectly well-defined physical quantity on the
macro-scale, it is a meaningless concept on the level of a single atom or
molecule. At the other extreme, we have one of the most complex
(and still controversial) examples of emergence of human
consciousness, which mysteriously emerges out of a caldron of
interacting neurons. Consciousness cannot be found in any individual
neuron, but is the collective property of the whole brain.

Example #1: Reynold's Boids

One of the most breathtakingly beautiful displays of nature is the
synchronous fluid-like flocking of birds. It is also an excellent example
of emergence in complex systems. Large or small, the magic of flocks is
the very strong impression they convey of some intentional centralized
control directing the overall traffic. Though ornithologists still do not
have a complete explanation for this phenomenon, evidence strongly
’ suggests that flocking is a decentralized activity, where each bird acts
according to its local perceptions of what nearby birds are doing.
Flocking is therefore a group behavior that emerges from collective
. action.

Craig Reynolds [264] programmed a set of artificial birds — which he
called boids - so that each boid followed three simple local rules:
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® Rule 1: maintain minimum distance from other objects
(including other boids)

® Rule 2: match velocity of nearby boids

® Rule 3: move toward the perceived center of nearby boids

Each boid thus "sees" only what its neighbors are doing and acts
accordingly. Reynolds found that the collective motion of all the boids
was remarkably close to real flocking, despite the fact that there is
nothing explicitly describing the flock as a whole. The boids initially
move rapidly together to form a flock. The boids at the edges either
slow down or speed up to maintain the flock's integrity. If the path
bends or zigzags in any way, the boids all make whatever minute
adjustments need to be made to maintain the group structure. If the
path is strewn with obstacles, the boids flock around whatever is in
their way naturally, sometimes temporarily splitting up to pass a an
obstacle before reassembling beyond it. There is no central command
that dictates this action.

The point of this example is not that the boids' behavior is a perfect
replica of natural flocking — although it is a close enough match that
Reynold's model has attracted the attention of professional
ornithologists — but that much of the boids' collective behavior is
entirely unanticipated, and cannot be easily derived from the rules
defining what each individual boid does.

Example #2: Collective Decentralized Sorting

Deneubourg, et. al. [213], have introduced a simple distributed sorting
algorithm that is inspired by the self-organized way in which
ant-colonies sort their brood.

Implemented by robot teams, their algorithm has the robots move
about a fenced-in environment that is randomly littered with objects
that can be scooped up. These robots (1) move randomly, (2) do not
communicate with each other, (3) can perceive only those objects
directly in front of them (but can distinguish between two or more
types of objects with some degree of error), and (4) do not obey any
centralized control. The probability that a robot picks up or puts down
an object is a function of the number of the same objects that it has
encountered in the past.

Coordinated by the positive feedback these simple rules induce
between robots and their environment, the result, over time, is a
seemingly intelligent, coordinated sorting activity. Clusters of
randomly distributed objects spontaneously and quite naturally
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emerge out a simple set of autonomous local actions having nothing
at all to do with clustering per se; see figure 16.

The authors suggest that this system's simplicity, flexibility, error
tolerance and reliability compensate for their lower efficiency. One
’ can argue, for example, that this collective sorting algorithm is much
less efficient than a hierarchical one. The cost of having a hierarchy,
though, is that the sorting would no longer be antlike but would
P require a god-like oracle analyzing how many objects of what type are
where, deciding how best to communicate strategy to the ants.
Furthermore, the ants would require some sort of internal map, a
rudimentary intelligence to deal with fluctuations and surprises in the
environment (what if an object was not where the oracle said it would
be?), and so on. In short, a hierarchy, while potentially more efficient,
would of necessity have to be considerably more complex as well. The
point Deneubourg, et. al. are making is that a much simpler collective
decentralized system can lead to seemingly intelligent behavior while
being more flexible, more tolerant of errors and more reliable that a
hierarchical system.

Figure 16. Collective sorting by ant-like robots

Other examples of emergence include

¢ the characteristic spirals of the Belousov-Zhabotinski chemical
reaction; see page 89

¢ the Navier-Stokeslike macroscopic behavior of a lattice gas that
consists, on the micro-scale, of simple unit-bit billiards moving
back and forth between discrete nodes along discrete links; see
page 90

¢ globally ordered collective behavior in high-dimensional cellular
automata systems that is locally featureless; see page 91

The macroscopic behavior in each of these examples is unexpected
despite the fact that the details of the microscopic dynamics is well
defined.
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Edge-of-Chaos

One often hears the phrase edge-of-chaos in discussions of complex
systems, as in "such and such a system appears poised at the
edge-of-chaos." As this important concept is still a topic of some debate,
we make a few comments regarding it.

Chris Langton [187] opens his "Life at the Edge of Chaos" paper at the
Artificial Life II conference with the following intriguing question:
"Under what conditions can we expect a dynamics of information to
emerge spontaneously and come to dominate the behavior of a
physical system?" While his question was, in that paper, motivated
chiefly by an understanding that living organisms may be distinguished
from inanimate matter by the fact that their behavior is clearly based
on a complex dynamics of information, its roots extend considerably
deeper.

Langton was able to provide a tentative answer to his question by
examining the behavior of the entire rule space of elementary
one-dimensional cellular automata rules (see discussion beginning on
page 81) as parameterized by a single parameter A.” He found that as A
is increased from its minimal to maximal values, a path is effectively
traced in the rule space that progresses from fixed point behavior to
simple periodicity to evolutions with longer and longer periods with
increasing transients, passes through an intermediate transition region
at a critical value A, crosses over into a chaotic regime of steadily
diminishing complexity until, eventually, the behavior is again
completely predictable at the maximal value of A and complexity falls
back to zero. Because the transition region represents the region of
greatest complexity and lies between regions in which the behavior is
either ordered or chaotic, Langton christened the transition region as
the edge-of-chaos.

Langton's tentative answer to the question above is therefore: "We
expect that information processing can emerge spontaneously and
come to dominate the dynamics of a physical system in the vicinity of a
critical phase transition.” Langton speculates that the dynamics of
phase transitions is fundamentally equivalent to the dynamics of
information processing.

7 Elementary cellular automata are discrete dynamical systems. They

consist of automata that live on sites of a one-dimensional lattice and that take
on one of only two values — 0 or 1. Their dynamics is completely prescribed by
arule, f, that explicitly maps a state consisting of an automaton's state and the
states of the automaton's left and right neighbors to either the value 0 or 1.
Given a cellular automata rule f, Langton's parameter A is defined to be the
fraction of entries in the rule table for f that get mapped to a non-zero value. For a more
complete discussion of cellular automata, see page 81.
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Figure 17. A Schematic illustration of the edge-of-chaos metaphor

. Ordered Regime Complex Regime Chaotic Regime
perturbations die out poised to adapt and evolve / effects of perturbations
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Phase Transition

Strictly speaking, Langton's edge-of-chaos idea holds true only for the
specific system in which it was discovered. Nonetheless, the idea has
frequently been used as a general metaphor for the region in
“complexity space” toward which complex adaptive systems appear to
naturally evolve (see figure 17). Kauffman ([71], [172]), in particular,
is a staunch advocate of the idea that systems poised at the
edge-of-chaos are optimized, in some sense, to evolve, adapt and
process information about their environment.

Effective computation, such as that required by life processes and the
maintenance of evolvability and adaptability in complex systems,
requires both the storage and transmission of information. If
correlations between separated sites (or agents) of a system are too
small - as they are in the ordered regime shown in figure 17 - the sites
evolve essentially independently of one another and little or no
transmission takes place. On the other hand, if the correlations are too
strong — as they are the chaotic regime — distant sites may cooperate so
strongly so as to effectively mimic each other's behavior, or worse yet,
whatever ordered behavior is present may be overwhelmed by random
noise; this, too, is not conducive to effective computation. It is only
within the phase transition region - in the complex regime poised at the
edge-of-chaos — that information can propagate freely over long distances
without appreciable decay. However loosely defined, the behavior of a
system in this region is best described as complex; i.e. it neither locks
into an ordered pattern nor does it dissolve into an apparent
randomness. Systems existing in this region are both stable enough to
store information and dynamically amorphous enough to be able to
successfully transmit it.

However intuitive the edge-of-chaos idea appears to be, one should be
aware that it has received a fair amount of criticism in recent years. It is
not clear, for example, how to even define complexity in more
complicated systems like coevolutionary systems, much less imagine a
phase transition between different complexity regimes. Even Langton's
suggestion that effective computation within the limited domain of
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cellular automata can take place only in the transition region has been
challenged.®

Complexity as a Measure?

Related to the concept of the edge-ofchaos is the problem of
determining what is meant by complexity, as a measure. That is to say,
the problem of finding an objective measure by which an object X can
be said to be more or less "complex” than objectY.

To set up the problem and in order to appreciate more fully the
difficulty in quantifying complexity, consider figure 18. The figure
shows three patterns: (1) an area of a regular two-dimensional
Euclidean lattice, (2) a space-time view of the evolution of an
elementary one-dimensional cellular automaton (see page 81 for
discussion), and (3) a completely random collection of dots. These
patterns illustrate the incongruity that exists between mathematically
precise notions of entropy, or the amount of disorder in a system, and
intuitive notions of complexity. Whereas pattern (2) is intuitively the
most complex of the three patterns, it has neither the highest entropy
(which belongs to pattern (3)) or the lowest (which belongs to pattern
(1)). Indeed, were we to plot our intuitive sense of complexity as a
function of the amount of order or disorder in a system, it would
probably look something like that shown in figure 19 (compare this
figure to figure 17). The problem is to find an objective measure of the
complexity of a system that matches this intuition.

Figure 18. Three patterns of varying "complexity"

yattern 1 pattern 2

We all have an intuitive feel for complexity. An oil painting by Picasso
is obviously more "complex"” than the random finger-paint doodles of a
three-year-old. The works of Shakespeare are more "complex" than
the rambling prose banged out on a typewriter by the proverbial band

8 Mitchell, M., P.T.Hraber and J.P.Crutchfield, "Revisiting the edge of
chaos: evolving cellular automata to perform computations,” Complex Systems,
Volume 7, 1993, 89-130.
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of monkeys. Our intuition tells us that complexity is usually greatest in
systems whose components are arranged in some intricate
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1

| difficult-to-understand pattern or, in the case of a dynamical system,
|

» when the outcome of some process is difficult to predict from its initial
. state. -
: Figure 19. Complexity versus degree of order in a system
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The problem is to articulate this intuition formally; to define a
measure that not only captures our intuitive feel for what distinguishes
the complex from the simple but also provides an objective basis for
formulating conjectures and theories about complexity. While a
universally accepted measure has yet to be defined (over 30 measures
of complexity have been proposed in the research literature; see
[86]),all such measures of complexity fall into two general classes:

® Static Complexity, which addresses the question of how an object
or system is put together (i.e. only purely structural
informational aspects of an object, or the patterns and/or
strengths of interactions among its constituent parts), and is

independent of the processes by which information is encoded
and decoded.

® Dynamic complexity, which addresses the question of how much
dynamical or computational effort is required to describe the
information content of an object or state of a system.

Note that while a system's static complexity certainly influences its
dynamical complexity, the two measures are clearly not equivalent. A
system may be structurally rather simple (i.e. have a low static
complexity), but have a complex dynamical behavior. (Think of the
chaotic behavior of Feigenbaum's logistic equation, for example; see

page 34).




Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook

What is the Difference Between Chaos and Complexity?

Very loosely speaking, it can be said that where chaos is the study of
how simple systems can generate complicated behavior, complexity is
the study of how complicated systems can generate simple behavior.
Since both chaos and complex systems theory attempt to describe the
behavior of dynamical systems, it should not be surprising to learn that
both share many of the same tools, although, properly speaking,
complex systems theory ought to be regarded as the superset of the
two methodologies.

Table 5 lists behavioral characteristics of four basic kinds of dynamics:
ordered, random, chaotic and complex.

Table 5. A comparison among different types of dynamics

Ordered Random Chaotic Complex
Examples planetary | static noise weather  |human brain
orbits on radio patterns
Predictability | very high none short times | continually
(statistical) only evolving
Effects of exponential
Small very small none growth of | adaptation
Perturbations initial errors
Dimensionality
(degrees of finite infinite typically low very high
freedom)
limit-points none strange emergence
Attractors and attractors vice
limit-cycles attractors
difficult (but
Control easy hard ripe for | self-adaptive
exploitation)
Cellular Automata

Cellular automata (CA) are a class of spatially and temporally discrete,
deterministic mathematical systems characterized by local interaction
and an inherently parallel form of evolution. First introduced by von
Neumann in the early 1950s to act as simple models of biological
self-reproduction, CA are prototypical models for complex systems and
processes consisting of a large number of identical, simple, locally
interacting components. The study of these systems has generated
great interest over the years because of their ability to generate a rich
spectrum of very complex patterns of behavior out of sets of relatively
simple underlying rules. Moreover, they appear to capture many
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essential features of complex self-organizing cooperative behavior
observed in real systems.

Although much of the theoretical work with CA has been confined to
. mathematics and computer science, there have been numerous
applications to physics, biology, chemistry, biochemistry, and geology,
among other disciplines. Some specific examples of phenomena that
. have been modeled by CA include fluid and chemical turbulence,
plant growth and the dendritic growth of crystals, ecological theory,
DNA evolution, the propagation of infectious diseases, urban social
dynamics, forest fires, and patterns of electrical activity in neural
networks. CA have also been used as discrete versions of partial
differential equations in one or more spatial variables. They have most
recently been used to simulate some aspects of military combat [323].

The best sources of information on CA are conference proceedings
and collections of papers, such as the one's edited by Boccara [29],
Gutowitz [120], Preston [254] and Wolfram [321]-[322]. An excellent
review of how CA can be used to model physical systems is given by
Toffoli and Margolus [304].

While there is an enormous variety of particular CA models — each
carefully tailored to fit the requirements of a specific system — most CA
models usually possesses these five generic characteristics:

® discrete lattice of cells: the system substrate consists of a one-, two-
or three-dimensional lattice of cells

® homogeneity: all cells are equivalent

® discrete states: each cell takes on one of a finite number of possible
discrete states

® local interactions: each cell interacts only with cells that are in its
local neighborhood (figure 23 shows some common
neighborhoods in two dimensions)

® discrete dynamics: at each discrete unit time, each cell updates its
current state according to a transition rule taking into account
the states of cells in its neighborhood

Example #1: One-dimensional CA -

For a one-dimensional CA, the value of the ith cell at time t - denoted
by c,(t) - evolves in time according to a "rule" F that is a function of
c;(t) and other cells that are within a range r (on the left and right) of

c,(v):
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Ci(t) = F[Ci_r(t— 1),Ci_r+1(t— 1), ...,Ci.{.r_](t" 1), Ci+r(f— 1)]

Since each cell takes on one of k possible values - that is,
ci(f) € {0,1,2,...,k} - the rule F is completely defined by specifying
the value assigned to each of the k*' possible (2r+1)-tuple
configurations for a given range-r neighborhood:

ci(t—1) ci(t—-1) Cir(t—1) ci(t)
0 0 0 F(0,0,...,0)
0 0 1 |F(0,0,.,1)
K K Kk [F(kK, k)

Since F itself assigns any of k values to each of the k**' possible
(2r+1)-tuples, the total number of possible rules is an exponentially
increasing function of both k and r. For the simplest case of nearest
neighbors (range r=1) and k=2 (¢, = 0 or 1), for example, there are
2°=256 possible rules. Increasing the number of values each cell can
take on to k=3 (but keeping the radius at r=1) increases the rule-space
size to 33’ ~ 7 1012,

Figure 20 shows the time evolution of a nearest-neighbor (radius r=1)
rule where c is equal to either 0 or 1. The row of eight boxes at the top
of the figure shows the explicit rule-set, where - for visual clarity — a
box has been arbitrarily colored "black" if the value c=1 and "white" if
c=0. For each combination of three adjacent cells in generation 0, the
rule F assigns a particular value to the nextgeneration center cell of
the triplet. Beginning from an initial state (at time=0) consisting of the
value zero everywhere except the center site, that is assigned the value
1, F is applied synchronously at each successive time step to each cell of
the lattice. Each generation is represented by a row of cells and time is
oriented downwards. The first image shows a blowup of the first five
generations of the evolution. The second shows 300 generations. The
figure illustrates the fact that simple rules can generate considerable
complexity.

The space-time pattern generated from a single nonzero cell by this
particular rule has a number of interesting properties. For example, it
consists of a curious mixture of ordered behavior along the
left-hand-side and what appears to be disordered behavior along the
righthand-side, separated by a corrugated boundary moving towards
the left at a "speed” of about 1/4 cells per "clock" tick. In fact, it can be
shown that, despite starting from an obviously non-random initial state
and evolving according to a fixed deterministic rule, the temporal
sequence of vertical values is completely random. Systems having the
ability to deterministically generate randomness from non-random
input are called autoplectic systems.
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Figure 20. Example of a one-dimensional CA
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As another example, consider the rule shown at the top of figure 21.
Its space-time evolution, starting from a random initial state, is shown
at the bottom of the figure. Note that this space-time pattern can be
described on two different levels: either on the celllevel, by explicitly
reading off the values of the individual cells, or on a higher-level by
describing it as a sea of particle-like structures superimposed on a
periodic background. In fact, following a small initial transient period,
temporal sections of this space-time pattern are always of the form
"...BBBBPBB...BB.. BBBP'BB...BBBP"'BBB...", where "B" is a state of
the periodic background consisting of repetitions of the sequence
"10011011111000" (with spatial period 14 and temporal period 7), and
the P's represent "particles." The particle pattern P = "11111000", for
example, repeats every four steps while being displaced two cells to the
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left; the particle P ="11101011000" repeats every ten steps while being
displaced two cells to the right.

Figure 21. Evolution of a one-dimensional CA starting from a random
initial state

penlly B "pbEnil o bR

Although the underlying dynamics describing this system is very
simple, and entirely deterministic, there is an enormous variety, and
complexity, of emergent particle-particle interactions. Such simple
systems are powerful reminders that complex higherlevel dynamics
need not have a complex underlying origin. Indeed, suppose that we
had been shown such a space-time pattern but were told nothing
whatsoever about its origin. How would we make sense of its dynamics?
Perhaps the only reasonable course of action would be to follow the
lead of any good experimental particle-physicist and begin cataloging
the various possible particle states and interactions: there are N particles
of size s moving to the left with speed v, when a particle p of type P collides with
q of type Q , the result is the set of particles (p,, ..., p,}; and so on. It would
take a tremendous leap of intuition to fathom the utter simplicity of
the real dynamics.

In general, the behavior of CA is strongly reminiscent of the kinds of
behavior observed in continuum dynamical systems, with simple rules
yielding steady-state behaviors consisting of fixed points or limit cycles,
and complex rules giving rise to behaviors that are analogous to
deterministic chaos. In fact, there is extensive empirical evidence
suggesting that patterns generated by all (one-dimensional) CA
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evolving from disordered initial states fall into one of only four basic
behavioral classes:

® (lass 1: evolution leads to a homogenous state, in which all cells
eventually attain the same value

® (lass 2: evolution leads to either simple stable states or periodic
and separated structures

® (lass 3: evolution leads to chaotic nonperiodic patterns

® Class 4: evolution leads to complex, localized propagating
structures

All CA within a given class yield qualitatively similar behavior. While
the behaviors of rules belonging to the first three rule classes bear a
strong resemblance to those observed in continuous systems — the
homogenous states of class 1 rules, for example, are analogous to
fixed-point attracting states in continuous systems, the asymptotically
periodic states of class 2 rules are analogous to continuous limit cycles
and the chaotic states of class 3 rules are analogous to strange
attractors — the more complicated localized structures emerging from
class 4 rules do not appear to have any obvious continuous analogues
(although such structures are well characterized as being soliton-like in
their appearance).

Figure 22 shows a few examples of the kinds of space-time patterns
generated by binary (k=2) nearest-neighbor (r=1) in one dimension
and starting from random initial states.

Figure 23 shows examples of some commonly used neighborhood
structures in two dimensions. These include (1) the von Neumann
neighborhood, which consists of the four cells that are horizontally
and vertically adjacent to the center cell, (2) the Moore neighborhood,
that consists of all eight nearest-neighbor cells on a two-dimensional
Euclidean lattice, and (3) the Hexagonal neighborhood, that consists
of all nearest-neighbor cells on a hexagonal lattice.
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Figure 22. Space-time evolution of nine different nearest neighbor
one-dimensional CA starting from random initial states

space ———»-
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Figure 23. Examples of CA neighborhoods in two dimensions

von Neumann Moore Hexagonal

Example #2: Conway's Life

"Its probable, given a large enough Life space, initially in a random state, that
after a long time, intelligent self-reproducing animals will emerge and
populate some parts of the space.” -John H. Conway

Perhaps the most widely known CA is the game of Life, invented by
John H. Conway, and popularized extensively by Martin Gardner in his
"Mathematical Games" department in Scientific American in the early
1970s.

Life is "played" using the 9-neighbor Moore neighborhood (see figure
23), and consists of (1) seeding a lattice with some pattern of "live" and
"dead" cells, and (2) simultaneously (and repeatedly) applying the
following three rules to each cell of the lattice at discrete time steps:
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® Birth: replace a previously dead cell with a live one if exactly 3 of
its neighbors are alive

® Death: replace a previously live cell with a dead one if either (1)
the living cell has no more than one live neighbor (i.e. it dies of
isolation), or (2) the living cell has more than three neighbors
(i.e. it dies of overcrowding)

® Survival: retain living cells if they have either 2 or 3 neighbors

One of the most intriguing patterns in Life is an oscillatory
propagating pattern known as the "glider.” Shown on the left-hand-side
of figure 24, it consists of 5 "live" cells and reproduces itself in a
diagonally displaced position once every four iterations. When the
states of Life are projected onto a screen in quick succession by a fast
computer, the glider gives the appearance of "walking" across the
screen. The propagation of this pseudo-stable structure can also be
seen as a selforganized emergent property of the system. The
right-hand-side of figure 24 shows a still-frame in the evolution of a
pattern known as a "glider-gun," which shoots-out a glider once every
30 iteration steps.

What is remarkable about this very simple appearing rule is that one
can show that it is capable of universal computation. This means that
with a proper selection of initial conditions (i.e. the initial distribution
of "live" and "dead" cells), Life can be turned into a general purpose
computer. This fact fundamentally limits the overall predictability of
Life's behavior.

Figure 24. Glider patterns in Conway's Life
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The well known Halting Theorem, for exampie, asserts that there
cannot exist a general algorithm for predicting when a computer will
halt its execution of a given program [107]. Given that Life is a
universal computer - so that the Halting Theorem applies - this means
that one cannot, in general, predict whether a particular starting
configuration of live and dead cells will eventually die out. No shortcut
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is possible, even in principle. The best one can do is to sit back and
patiently await Life's own final outcome.

Put another way, this means that if you want to predict Life's long-term
behavior with another "model” or by using, say, a partial differential
equation, you are doomed to fail from the outset because its long-term
behavior is effectively unpredictable. Life - like all computationally
universal systems - defines the most efficient simulation of its own
behavior.

Example #3: Belousov-Zhabotinski Reaction

The Belousov-Zhabotinski (BZ) reaction is a chemical reaction
consisting of simple organic molecules that is characterized by
spectacular oscillating temporal and spatial patterns. One variant of
the BZ reaction involves the reaction of bromate ions with an organic
substrate (typically malonic acid) in a sulfuric acid solution with
cerium (or some other metalion catalyst). When this mixture is
allowed to react exothermally at room temperature, interesting
temporal and spatial oscillations (i.e. chemical waves) result. The
system oscillates, changing from yellow to colorless and back to yellow
about twice a minute, with the oscillations typically lasting for over an
hour (until the organic substrate is exhausted).

These patterns are an example of what are sometimes called dissipative
structures, which arise in many complex systems. Dissipative structures
are dynamical patterns that retain their organized state by persistently
dissipating matter and energy into an otherwise thermodynamically
open environment.

Figure 25. Example of self-organization in a two-dimensional CA

Figure 25 shows a sample evolution of a CA model of this reaction, in
which cells are identified with the reacting molecules, and are colored
"black” if they are "active" and "white" if they are "inactive,” according
to the reaction rules. The spatial and temporal patterns that emerge
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|

|

} from the initially random mixture of states are also a good general
| example of how CA can be used to model self-organization.

|

. Example #4: Lattice Gases

L 2
| Lattice gases are micro-level rule-based simulations of macro-level fluid
. behavior. Lattice-gas models provide a powerful new tool in modeling
e real fluid behavior. The idea is to reproduce the desired macroscopic

behavior of a fluid by modeling the underlying microscopic dynamics.

It can be shown that three basic ingredients are required to achieve an
emergence of a suitable macrodynamics out of a discrete microscopic
substrate: (1) local thermodynamic equilibrium, (2) conservation laws,
and (3) a "scale separation" between the levels at which the
microscopic dynamics takes place (among kinetic variables living on a
micro-lattice) and the collective motion itself appears (defined by
hydrodynamical variable on a macro-lattice). Another critical feature is
the symmetry of the underlying lattice.

While there are many variants of the basic model, one can show that
there is a well-defined minimal set of rules that define a lattice-gas
system whose macroscopic behavior reproduces that predicted by the
Navier-Stokes equations’ exactly. In other words, there is critical
"threshold” of rule size and type that must be met before the
continuum fluid behavior is matched, and once that threshold is
reached the efficacy of the ruleset is no longer appreciably altered by
additional rules respecting the required conservation laws and
symmetries.

Figure 26. Two-dimensional lattice-gas simulation of a fluid

e
time =200

Figure 26 shows a few snapshots of the evolution of a two-dimensional
lattice gas starting from an initial condition in which there is a tightly
packed region of particles at the center of the lattice. Notice how this
central region expands rapidly outward, and is very reminiscent of the

9

‘The Navier-Stokes equations are a set of analytically intractable
coupled nonlinear partial differential equations describing fluid flow.
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effect a dropped stone has on an initially stagnant pool of water. The
most striking feature is the circular sound wave, which is circular
despite the fact that the microscopic dynamics takes place on a square
lattice. The lattice gas "rules” thus force a symmetry that is not present
in the microscopic dynamics to emerge on the macro-scale.

Example #5: Collective Behavior in Higher Dimensions

Chate and Manneville! have examined a wide variety of cellular
automata that live in dimensions four, five and higher. They found
many interesting rules that while being essentially featureless locally,
nonetheless show a remarkably ordered global behavior.

Figure 27, for example, plots the probability that a cell has value 1 at
time t+1 - labeled P, — versus the probability that a cell had value 1 at
time t - labeled P, - four a particular four dimensional cellular
automaton rule. The rule itself is unimportant, as there are many rules
that display essentially the same kind of behavior. The point is that
while the behavior of this rule is locally featureless — its space-time
diagram would look like static on a television screen — the global
density of cells with value 1 jumps around in quasi-periodic fashion.
We emphasize that this quasi-periodicity is a global property of the
system, and that no evidence for this kind of behavior is apparent in
the local dynamics.

Figure 27. Collective behavior of a four dimensional CA

10 H. Chate and P. Manneville, Europhysc Letters, Volume 14, 1991, 409.
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Here again we see a pristine example of the three basic elements of
emergence: (1) the global phenomenon (in this case the cell-value
density) emerges out of an interaction of a large number of simple
components (lattice cells of a cellular automaton), (2) there is no

. evidence of the global phenomenon on the local level, and (3) the
global phenomenon obeys a separate dynamics (in this case,
| quasi-periodicity).
| »
: Other Variants

There are as many different variants of the basic CA algorithm as there
are ways of generalizing the five fundamental characteristics of what
makes up a CA system. Here are a few:

® Probabilistic CA (PCA). Probabilistic CA are cellular automata in
which the deterministic state-transitions are replaced with
specifications of the probabilities of the cell-value assignments.
Since such systems have much in common with certain statistical
mechanical models, analysis tools from physics are often
borrowed for their study.

® Non-homogeneous CA. These are CA in which the state-transition
rules are allowed to vary from cell to cell. The simplest such
example is one where there are only two different rules
randomly distributed throughout the lattice. Kauffman [171] has
studied the other extreme in which the lattice is randomly

populated with all 22kpossib1e Boolean functions of k inputs.

® Coupled-map Lattices. These are models in which continuity is
restored to the state space. That is to say, the cell values are no
longer constrained to take on only the values 0 and 1 as in the
examples discussed above, but can now take on arbitrary real
values. First introduced by Kaneko [167], such systems are
simpler than partial differential equations but more complex
than generic CA.

Genetic Algorithms

Genetic algorithms (GAs) are a class of heuristic search methods and
computational models of adaptation and evolution based on natural
selection.

In nature, the search for beneficial adaptations to a continually
changing environment (i.e. evolution) is fostered by the cumulative
evolutionary knowledge that each species possesses of its forebears.
This knowledge, which is encoded in the chromosomes of each
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member of a species, is passed from one generation to the next by a
mating process in which the chromosomes of "parents” produce
"offspring” chromosomes.

GAs mimic and exploit the genetic dynamics underlying natural
evolution to search for optimal solutions of general combinatorial
optimization problems. They have been applied to the Traveling
Salesman Problem, VLSI circuit layout, gas pipeline control, the
parametric design of aircraft, neural net architecture, models of
international security, and strategy formulation.

While their modern form is derived mainly from John Holland's work
in the 1960s [142], many key ideas such as using "selection of the
fittest" like population-based selection schemes and using binary
strings as computational analogs of biological chromosomes, actually
date back to the late 1950s. More recent work is discussed by Goldberg
[118], Davis [65] and Michalewicz [215] and in conference
proceedings edited by Forrest [99]. A comprehensive review of the
current state-of-the-art in genetic algorithms is given by Mitchell [220].

The basic idea behind GAs is very simple. Given a "problem" - which
can be as well-defined as maximizing a function over some specified
interval or as seemingly ill-defined and open-ended as evolution itself,
where there is no a-priori discernible or fixed function to either
maximize or minimize — GAs provide a mechanism by which the
solution space to that problem is searched for "good solutions.”
Possible solutions are encoded as chromosomes (or, sometimes, as sets
of chromosomes), and the GA evolves one population of chromosomes
into another according to their fitness by using some combination
(and/ or variation) of the genetic operators of crossover and mutation.
A solution search space together with a fitness function is called a
fitness landscape. Eventually, after many generations, the population
will, in theory, be composed only of those chromosomes whose fitness
values are clustered around the global maximum of the fitness
landscape.

Genetic Operators

Each chromosome is usually defined to be a bit-string, where each bit
position (or "locus") takes on one of two possible values (or "alleles"),
and can be imagined as representing a single point in the "solution
space.” The fitness of a chromosome effectively measures how "good" a
solution that chromosome represents to the given problem. Aside
from its intentional biological roots and flavoring, GAs can be thought
of as parallel equivalents of more conventional serial optimization
techniques: rather than testing one possible solution after another, or
moving from point to point in the solution phase-space, GAs move
from entire populations of points to new populations.
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Figure 28 shows examples of the three basic genetic operations of
reproduction, crossover and mutation, as applied to a population of 8-bit
chromosomes. Reproduction makes a set of identical copies of a given
chromosome, where the number of copies depends on the
chromosome's fitness. The crossover operator exchanges subparts of
two chromosomes, where the position of the crossover is randomly
selected, and is thus a crude facsimile of biological sexual
recombination between two single-chromosome organisms. The
mutation operator randomly flips one or more bits in the
chromosome, where the bit positions are randomly chosen. The
mutation rate is usually chosen to be small.

While reproduction generally rewards high fitness, and crossover
generates new chromosomes whose parts, at least, come from
chromosomes with relatively high fitness (this does not guarantee, of
course, that the crossoverformed chromosomes will also have high
fitness; see below), mutation seems necessary to prevent the loss of
diversity at a given bit-position. For example, were it not for mutation,
a population might evolve to a state where the first bit-position of each
chromosome contains the value 1, with there being no chance of
reproduction or crossover ever replacing it with a 0.

Figure 28. Schematic representation of the basic GA operators
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The Basic GA Recipe

Although GAs, like CA, come in many different flavors, and are usually
fine-tuned in some way to reflect the nuances of a particular problem,
they are all more or less variations of the following basic steps (see
figure 29):
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® Step I begin with a randomly generated population of
chromosome-encoded "solutions” to a given problem

® Step 2: calculate the fitness of each chromosome, where fitness is
a measure of how well a member of the population performs at
solving the problem

® Step 3: retain only the fittest members and discard the least fit
members

® Step 4: generate a new population of chromosomes from the
remaining members of the old population by applying the
operations reproduction, crossover, and mutation (see figure 28)

® Step 5: calculate the fitness of these new members of the

population, retain the fittest, discard the least fit, and re-iterate
the process

Figure 29. Basic steps of the genetic algorithm

new generation
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Example #1: Function Maximization

As a concrete example, suppose our problem is to maximize the fitness
function f(x) = x* wusing six 6-bit chromosomes of the form
C=(c;,Cy-.-,C5), Where each ¢; is equal to either 0 or 1. C's fitness, f(C), is
determined by first converting its binary representation into a base-10
equivalent value and squaring: f(C)=(c,+2¢,+2%c,+2°c,+2'c,++2°c;)>.

The first step is to construct six random bit-strings representing the
initial population:
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C, = (101101) | C,= (010110) | C,= (111001)
C,= (101011) | C,=(010001) | C,=(011101)

These chromosomes have fitness values of 2025, 484, 3249, 1849, 289
and 841, respectively. The average fitness is 1456. By luck of the
fitnessscaled draw, where the number of copies of a given
chromosome is determined according to its fitness, scaled by the
average fitness of the entire population, three copies of C; are made
for the next population (owing to its relatively high fitness), one copy
each for chromosomes C,, C, and C; and none for the remaining
chromosomes. These copies form the mating population.

Next, we randomly pair up the new chromosomes, and perform the
genetic crossover operation at randomly selected bit-positions -
chromosomes C,and C, exchange their last three bits, C, and C
exchange their last four bits, and C; and C; exchange their last bit:

C, exchange with C, at bit 3: (101.101) x (111.001) —_— (101001)
C, exchange with C; at bit 2: (11.1001) x (01.1101) — (111101)
C, exchange with C; at bit 5: (11100.1) x (10101.1) —_— (111001)
C, exchange with C, at bit 3: (111.001) x (101.101) — (111101)
C, exchange with C; at bit 5: (10101.1) x (11100.1) —_ (101011)
C, exchange with C, at bit 2: (01.1101) x (11.1001) — (011001)

Finally, we mutate each bit of the resulting chromosomes with some
small probability — say p,,,0.=0-05. In our example we find that values
of the 5% bit in C, and 6™ bit in C; are flipped. The resulting strings
make up our 2™ generation chromosome population. By chance, the
first loop through the algorithm has successfully turned up the mostit
chromosome - C,;=(111111) —> f(C,) = 63° = 3969 - but in general the
entire procedure would have to be repeated many times to approach
the "desired" solution.

The table below summarizes the above steps:

Initial Initial | Expected| Actual | Mating Crossover Mutation New
Population | Fitness | Copies | Copies | Population Operation' Operation | Fitness
(101101) | 2025 14 1 (101101) | (134)->(101001) | (101001) 1681
(010110) 484 0.3 0 (111001) | (226)->(111101) | (111101) 3481
(111001) | 3249 2.2 3 (111001) | (355)->(111001) | (111001) 3249
(101011) | 1849 1.3 1 (111001) | (431)->(111101) | (111111) 3969
(010001) 289 0.2 0 (101011) | (553)->(101011) | (101010) 1764
(011101) 841 0.6 1 (011101) | (622)->(011001) | (011001) 625

1

The crossover operator (xyz) means that chromosomes C, and C,
exchange bits at the y” bit.
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Example #2: Local Forecasting of High-Dimensional Chaotic
Dynamics

The first example of using a genetic algorithm to maximize the value
of the function f(x) = x?, discussed above, is deliberately simple and
was chosen mainly for its pedagogical value The second example,
discussed below, shows more of the real power of genetic algorithms.

Meyer and Packard'' use a genetic algorithm to learn patterns in data
produced by a high-dimensional chaotic attractor. The patterns are
relationships between a region of the attractor and the future behavior
of chaotic orbits that pass through this region. They find that a genetic
algorithm gives accurate local profiles of the attractor that provide
forecasts of behavior.

Meyer and Packard first form a finite set of N data points -
{€1,€2,....,EN} - from a continuous variable representing the
evolution of a high-dimensional chaotic system. From this set of points,
they construct a sequence of points in a corresponding d-dimensional
space X — {-x’g,&d.ﬂ, ...,?cN} — where each x;= (a1, ...,E1) is a set of
past values in the time series. The problem is to determine a map from
the past values (€ a1,...,&) to the future value at time t, § or,
equivalently, to find a2 map from x; to y, =&

H—t, ?

/.
e

Meyer and Packard search for specific patterns of the form

(@i<&i<P) A(@j<Ei<PB) A Ak <Ex<Pi)

where "A" means AND. In other words, they seek intervals that each of
the past values of the set must be in to predict the future value of the
trajectory at a given later point to some arbitrarily selected threshold
error. The genetic algorithm is used to search for the optimal patterns
of this form, mutations adding or deleting conditions to an existing
"candidate" conjunction, crossover taking two existing candidates and
exchanging roughly half of the constraints of one with the other.

Figure 30 shows the four best predictive patterns for the chaotic system
chosen for this analysis. In the figure, the set X, appearing on the left
hand side, represents a set of 30 points from which the value of y,
shown at the right, is to be predicted. The intervening 150 points,
shown in grey, represent intermediate times during which the chaotic
system is allowed to evolve; no information is extracted from the data
during this interval. The value of y’ is to be predicted solely from the
30 values contained in the set X.

" Thomas P. Meyer and N. H. Packard, "Local forecasting of
high-dimensional chaotic dynamics," pages 249-263 in reference [44].
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Notice the intermediate divergence of each of the trajectories and how
they all subsequently collapse to a narrow range of values around the
desired y". In order to fully appreciate how impressive a find the
predictive patterns shown in figure 30 really are, keep in mind the
extraordinarily vast space of possible patterns that the genetic
algorithm is asked to search through. Even if the each of 30 x values
are allowed to take on one of only two values — remember that, in fact,

they can take on a continuum of values — there are still 2*° & 10°
possible conjunctive patterns to search through!

Figure 30. The four best patterns in X yielding the value y*, as found
by a genetic algorithm

a)
b)
c)
d)
Other Variants

There are several different variants of the basic genetic algorithm as
outlined above:

® Classifier Systems. Classifier systems were introduced by John
Holland as an attempt to apply genetic algorithms to cognitive
tasks. They are similar to production systems of the "if...then"
variety in artificial intelligence. A classifier system typically
consists of (1) a set of detectors (or input devices) that provide
information to the system about the state of the external
environment, (2) a set of effectors (or output devices) that
transmit the classifier's conclusions to the external environment,
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(3) a set of rules (or classifiers), consisting of a condition and
action, and (4) a list of messages. Learning is supervised as in
multilayered neural networks (see page 116).

® Evolutionary Programming. Evolutionary programming is an early
variant of genetic algorithms and is mainly distinguished from
the conventional genetic algorithm by not incorporating
CroSSOVer as an operator.

® Genetic Programming. Genetic programming is essentially an
application of genetic algorithms to computer programs.
Typically the genome is represented by a LISP expression, so
that what evolves is a population of programs, rather than
bit-strings as in the case of a usual genetic algorithm. For
references see Koza [179] and the WWW sources listed in the
appendix.

Self-Organized Criticality

Self-organized criticality (SOC) describes a large body of both
phenomenological and theoretical work having to do with a particular
class of time-scale invariant and spatial-scale invariant phenomena. As
with many of the terms and concepts associated with nonlinear
dynamics and complex systems, its meaning has been somewhat
diluted and made imprecise since its introduction a few years ago, in
large part due to the veritable explosion of articles on complex systems
appearing in the popular literature. Fundamentally, SOC embodies the
idea that dynamical systems with many degrees of freedom naturally
self-organize into a critical state in which the same events that brought
that critical state into being can occur in all sizes, with the sizes being
distributed according to a power-law.

"Criticality" here refers to a concept borrowed from thermodynamics.
Thermodynamic systems generally get more ordered as the
temperature is lowered, with more and more structure emerging as
cohesion wins over thermal motion. Thermodynamic systems can exist
in a variety of phases ~ gas, liquid, solid, crystal, plasma, etc. — and are
said to be critical if poised at a phase transition. Many phase transitions
have a critical point associated with them, that separates one or more
phases. As a thermodynamic system approaches a critical point, large
structural fluctuations appear despite the fact the system is driven only
by local interactions. The disappearance of a characteristic length scale
in a system at its critical point, induced by these structural fluctuations,
is a characteristic feature of thermodynamic critical phenomena and is
universal in the sense that it is independent of the details of the
system's dynamics.
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The kinds of structures SOC seeks to describe the underlying
mechanisms for look like equilibrium systems near critical points but
are not near equilibrium; instead, they continue interacting with their
environment, "tuning themselves” to a point at which critical-like
behavior appears. In contrast, thermodynamic phase transitions usually
take place under conditions of thermal equilibrium, where an external
control parameter such as temperature is used to tune the system into
a critical state.

Introduced in 1988 by Bak, Chen and Wiesenfeld [15], SOC is
arguably the only existing holistic mathematical theory of
self-organization in complex systems, describing the behavior of many
real systems in physics, biology and economics. It is also a universal
theory in that it predicts that the global properties of complex systems
are independent of the microscopic details of their structure, and is
therefore consistent with the "the whole is greater than the sum of its
parts” approach to complex systems. Put in the simplest possible terms,
SOC asserts that complexity is criticality. That is to say, that SOC is

‘nature's way of driving everything towards a state of maximum

complexity.

In general, SOC appears to be prevalent in systems that have the
following properties:

* they have many degrees of freedom
® their parts undergo strong local interactions
¢ the number of parts is usually conserved

* they are driven by being slowly supplied with "energy" from an
€X0genous source

® energy is rapidly dissipated within the system
In systems that have these properties, SOC itself is characterized by

® a self-organized drive towards the critical state

* intermittently triggered ("avalanche"-style) release of energy in
the critical state

® sensitivity to initial conditions (i.e. the trigger can be very
small)*?

1 Sensitivity to initial conditions is usually a trademark of chaos in

dynamical systems. Unlike fully chaotic systems, however, in which nearby
trajectories diverge exponentially, the distance between two trajectories in
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® the critical state is maintained without any external "tuning"

These ideas will be explained more fully in the example that follows.

Example: Sandpiles

To better illustrate the concept of SOC, consider a "toy model" of
avalanches: A mechanical arm holds a large quantity of sand and sits
securely in place some distance above a flat circular table. Slowly -
individual grain by individual grain - the arm releases its store of sand.
The sand thus begins forming a pile beneath the arm.

At first, the grains all stay relatively close together near where they all
fall onto the pile. Then they begin piling up on top of one another,
creating a pile with a small slope. Every once and a while the slope
becomes too steep somewhere, and a few grains slide down in a small
avalanche. As the mechanical arm continues dispensing grains of sand,
the average slope of the pile of sand beneath it steepens, and the
average size of the resulting avalanches increases. The size of the pile
stops growing when the amount of sand added to the pile is balanced
by the amount of sand that falls off the circular table. This state is the
critical state.

What is special about the critical state is that when a grain of sand is
added to a sandpile in this state, it can spawn an avalanche of any size,
from the smallest avalanche consisting of only a few grains to a major
"catastrophe” involving very many grains to no avalanche at all.
Moreover, the size of an avalanche does not depend on the grain of
sand that triggers it. However, the frequency f of avalanches of a size
greater than or equal to a given size s is related to s by a powerlaw:
foc 1/s7B, for some B> 0; a relationship that, according to Bak, et. al,,
is the signature characteristic of SOC (see figure 31). There is thus no
such thing as an avalanche of average size. An estimate only gets larger
as more and more avalanches are averaged together. The critical state
is also stable: because even the largest avalanches involve only a small
fraction of the total number of grains in the sandpile, once a pile has
evolved to its critical state, it stays poised close to that state forever.

There is strong evidence to suggest that just as sandpiles self-organize
into a critical state, so do many real complex systems naturally evolve,
or "tune themselves," to a critical state, in which a minor event can, via

systems undergoing SOC grows at a much slower (power-law) rate. Systems
undergoing SOC are therefore only "weakly chaotic.”" There is an important
difference between fully developed chaos and weak chaos: fully developed
chaotic systems have a characteristic time scale beyond which it is impossible
to make predictions about their behavior; no such time scale exists for weakly
chaotic systems, so that long-time predictions may be possible.
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a cascading series of chain-reactions, involve any number of elements
of the system.

Figure 31. Power-law distribution from a computer simulation of a
two-dimensional sandpile cellular automaton'
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The critical state is an attractor for the dynamics: systems are
inexorably driven toward it for a wide variety of initial conditions.
Frequently cited examples of SOC include the distribution of
earthquake sizes, the magnitude of river flooding, and the distribution
of solar flare xray bursts, among others. Conway's Life-game CA-rule
(see page 87), which is a crude model of social interaction, appears to
self-organize to a critical state when driven by random mutations.
Another vivid example of SOC is the extinction of species in natural
ecologies. In the critical state, individual species interact to form a
coherent whole, poised in a state far out of equilibrium. Even the
smallest disturbances in the ecology can thus cause species to become
extinct. Real data show that there are typically many small extinction
events and few large ones, though the relationship does not quite
follow the same linear powerlaw as it does for avalanches. Bak and
Chen [15] have also speculated that "throughout history, wars and
peaceful interactions might have left the world in a critical state in
which conflicts and social unrest spread like avalanches.”

12 "Phase transitions and complex systems," R. V. Sole, et. al., Complexity,
Volume 1, No. 4, 1995, 13-26.
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Fractals

Another characteristic feature of many complex systems is some form
of a fractal structure. Just as structural fluctuations near phase
transitions have no characteristic scales, self-similar fractal structures
appear the same on all size scales and thus possess no characteristic
length scales. Familiar examples of fractals include fractal coastlines,
mountain landscapes and cloud formations. While fractals may be
ubiquitous in nature, however, the underlying dynamical mechanisms
are far from clear. It is reasonable to speculate that a common
mechanism may be found using notions of thermodynamic criticality.
Bak, et. al., suggest that fractal structures are the "spatial fingerprints”
of SOC.

Consider a fractal time series. One of its key features is that it cannot
be reduced to a series of periodic signals plus a noise term of the form
x(f) = xosin(ff) + Noise(t). If a fractal time series could be expressed in
this form, the contribution due to the noise term would average out as
t - ooand the signal would have a well-defined average value for its
frequency. Instead, a fractal time series is characterized by a
distribution of frequencies, D(f) «c 1/f, so that there is no characteristic

frequency (just as there is no characteristic length scale for spatial
fractals).

1/fNoise

Whenever the power spectral density, S(f), scales as 1/f, the system is
said to exhibit 1/fnoise (or flicker-noise). Despite being found almost
everywhere in nature — 1/fnoise has been observed in the current
fluctuations in a resistor, in highway traffic patterns, in the price
fluctuations on the stock exchange, in fluctuations in the water level of
rivers, to name just a few instances - there is currently no fundamental
theory that adequately explains why this same kind of noise should
appear in so many diverse kinds of systems. What is clear is that since
the underlying dynamical processes of these systems are so different,
the common bond cannot be dynamical in nature, but can only be a
kind of ‘"logical dynamics" describing how a system's
degrees-offreedom all interact. SOC may be a fundamental link
between temporal scale invariant phenomena and phenomena
exhibiting a spatial scale invariance. Bak, et. al., argue that 1/f noise is
actually not noise at all, but is instead a manifestation of the intrinsic
dynamics of self-organized critical systems.

A Possible Connection with Land Combat?

A simple way to test for SOC is to look for the appearance of any
characteristic powerlaw distributions in a system's properties.
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Richardson [266] and Dockery and Woodcock [77] have both
| reported linear SOC-like power-law scaling in land combat. Richardson
examined the relationship between the frequency of "deadly quarrels”
versus fatalities per deadly quarrel using data from wars ranging from
. 1820 to 1945. Dockery and Woodcock used casualty data for military
operations on the western front after Normandy in World War II and
found that the log of the number of battles with casualties greater than
» a given number C also scales linearly with log(C); see figure 32.

Figure 32. Analysis of WWII casualty data on the western front after
Normandy (Dockery and Woodcock, [77])

N = Numberof Beties with Cosmltes > C

The paucity of historical data, however, coupled with the still
controversial notions of SOC itself, makes it difficult to say whether
these suggestive findings are indeed pointing to something deep that
underlies all combat or are merely "interesting" but capture little real
substance. Even if the results quoted above do capture something
fundamental, they apply only to a set of many battles. The problems of
determining whether, or to what extent, a power-law scaling applies to
an individual battle or to a small series of battles, and — perhaps most
importantly - what tactically useful information can de derived from
the fact that power-law scaling exists at all, remain open.

- Complex Adaptive Systems

In simplest terms, complex adaptive systems (CASs) are complex
systems (meaning that they consist of many nonlinearly interacting
parts) whose parts can adapt to changing environments. Moreover,
each "part” typically exists within a nested hierarchy of parts within
parts; see figure 33.
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Figure 33. Schematic of a Complex Adaptive System
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Traditionally, simulations of complex systems have consisted of
mathematical or stochastic models, typically involving differential
equations, that relate one set of global parameters to another set and
describe the system's overall dynamics. The behavior of a system is
then "understood" by looking at the relationship between the input
and output variables of the simulation. While such an approach is
adequate for systems with parts that possess litle or no internal
structure, it is largely incapable of describing groups, or societies, in
which the internal dynamics of the constituent members of the system
represent a vital part of the underlying dynamics.

Additional drawbacks of traditional simulation methods include:

® a failure to distinguish among different levels of activity within real
complex systems; that is to say, a failure to appreciate that global
parameters, such as the population size of an ecology, are often
profoundly related to local parameters, such as the
decision-making processes of individuals within the ecology —
traditional simulation methods, particularly those relying on a
differential equation approach, seldom take into account this
local-global dichotomy;

® an inability to analytically account (such as in a differential
equation form) for individual actions and /or strategies of the
constituent elements of a complex system;

e an inability to realistically account for the qualitative information
that individuals may use in formulating their strategies and upon
which they may base their local decisions

An alternative agent-based approach, described below, is to respect the
nested hierarchy of dynamics and dynamical "decisions” that are made
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in these complex systems, and to include a model of the
decision-making ability and adaptability of the constituent agents.

This section provides a brief introduction to complex adaptive systems
and agent-based simulations. The recent monograph on complex
adaptive systems by Holland [144] is an excellent overall source of
reference. Additional source material can be found in conference
proceedings edited by Hillebrand and Stender [137], Meyer and
Wilson [213], and Varela [307], and in a collection of papers edited by
Maes [202] (the latter reference provides both theory and practical
descriptions of the design of autonomous agents). A recent overview of
adaptive autonomous agents, including a discussion of open problems,
is also given by Maes [204].

Characteristics

Most complex adaptive systems share seven basic characteristics (see
Holland, [144]):

¢ Four properties:
© aggregation

+ type I - reduction of pertinent variables by aggregating
"similar" things into categories; identifying details that
are unimportant for the problem at hand, categories
consist of things that differ only in those irrelevant
properties

« type II — emergence of complex large-scale behaviors
from the aggregate interactions of less complex agents
(example: Hofstadter's "Ant Fugue"); agents —>
meta-agents —> meta-meta-agents —> etc.

© nonlinearity - if f is a function or an operator, and x is a
system input (either a function or variable), then the effect
of adding two inputs, x, and x, first and then operating on
their sum is, in general, not equivalent to operating on two
inputs separately and then adding the outputs together;

© information flows — defined by nodes, connections and
resources, any of which can change over time

© diversity — diversity is neither accidental nor random; the
persistence of any individual agent depends on the context
provided by the other agents; roughly, each agent fills a
niche defined by the interactions centering on that agent; if
you remove one agent from the system — creating a "hole" -
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the system typically responds with a cascade of adaptations
resulting in a new agent that fills that hole

® Three mechanisms:

* tagging — a mechanism that facilitates aggregation; used
to manipulate symmetries — enabling CASs to ignore
certain details while directing their attention to certain
others; tags allow agents to select among other agents or
objects that would otherwise be indistinguishable

+ internal models — used by agents to "anticipate” and
"predict” events in their environment

*  building blocks — primitives used in building internal
models

Agent-Based Simulations

Agent-based simulations of complex adaptive systems are predicated
on the idea that the global behavior of a complex system derives
entirely from the low-level interactions among its constituent agents.
By relating an individual constituent of a complex adaptive system to
an agent, one can simulate a real system by an artificial world
populated by interacting processes. Agent-based simulations are
particularly adept at representing real-world systems composed of
individuals that have a large space of complex decisions and/or
behaviors to choose from.

Lessons about the real-world system that an agent-based simulation is
designed to model can be learned by looking at the emergent
structures induced by the interaction processes taking place within the
simulation.

The purpose behind building such simulations is twofold: it is to learn
both the quantitative and qualitative properties of the real system.
Agent-based simulations are well suited for testing hypotheses about
the origin of observed emergent properties in a system. This can be
done simply by experimenting with sets of initial conditions at the
micro-level necessary to yield a set of desired behaviors at the
macro-level. On the other hand, they also provide a powerful
framework within which to integrate ostensibly "disjointed” theories
from various related disciplines. For example, while basic agent-agent
interactions may be described by simple physics and sociology, the
internal decision-making capability of a single agent may be derived, in
part, from an understanding of cognitive psychology.
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Adaptive Autonomous Agents

The fundamental building block of most models of complex adaptive
systems is the so-called adaptive autonomous agent.  Adaptive
autonomous agents are parts of a complex adaptive system that try to
satisfy a set of goals (which may be either fixed or time-dependent) in
an unpredictable and changing environment. They are "adaptive” in
the sense that they can use their experience to continually improve
their ability to deal with shifting goals and motivations. They are
"autonomous" in that they operate completely autonomously, and do
not need to obey instructions issued by a God-like oracle.

Depending on the system being modeled and the environment that an
agent populates, an adaptive autonomous agent can take on many
different forms. In Deneubourg, ef. al's [213] study of decentralized
collective sorting, for example, which was used earlier as an example of
emergence (see page 91), the agents of the system are simple
(nonadaptive) robots that move about their physical environment and
make elementary decisions about whether to pick up or drop an
object. Examples of adaptive agents populating "cyberspace” are the
so-called "software agents" (or "knobots") that are entities that navigate
computer networks or cruise the World-Wide-Web searching for
relevant bits of data.

In general, an adaptive autonomous agent is characterized by the
following properties:

® it is an entity that, by sensing and acting upon its environment,
tries to fulfill a set of goals in a complex, dynamic environment

® it can sense the environment through its sensors and act on the
environment through its actuators

® it has an internal information processing and decision making
capability

e its anticipation of future states and possibilities, based on
internal models (which are often incomplete and/or incorrect),

often significantly alters the aggregate behavior of the system of
which an agent is part

® an agent's goals can take on diverse forms:
o desired local states

© desired end goals
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o selective rewards to be maximized

© internal needs (or motivations) that need to be kept within
desired bounds

The adaptive mechanism of an adaptive autonomous agent is typically
based on a genetic algorithm (see page 93).

What Distinguishes the Study of Adaptive Autonomous Agents
from Traditional AI?

At first sight, the kinds of problems best suited for agentbased
simulations appear to be similar to the kinds of problems for which
traditional artificial intelligence (Al) techniques have been developed.
How is an agent-based simulation different from a traditional artificial
intelligence approach? Maes [204] lists these key point that distinguish
traditional Al from the study of adaptive autonomous agents:

1. traditional Al focuses on systems exhibiting isolated "high-level"
competencies, such as medical diagnoses, chess playing, and so
on; in contrast, agent-based system target lower-level
competencies, with high-level competencies emerging
naturally, and collectively, of their own accord

2. traditional Al has focused on "close systems" in which the
interaction between the problem domain and the external
environment is kept to a minimum; in contrast, agentbased
systems are "open systems,” and agents are directly coupled
with their environment

3. most traditional Ai systems deal with problems in a piecemeal
fashion, one at a time; in contrast, the individual agents in an
agentbased system must deal with many conflicting goals
simultaneously

4. traditional Al focuses on "knowledge structures” that model
aspects of their domain of expertise; in contrast, an agent-based
system is more concerned with dynamic "behavior producing”
modules. It is less important for an agent to be able to address
a specific question within its problem domain (as it is for
traditional Al systems) than it is to be flexible enough to adapt
to shifting domains
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What Distinguishes Traditional Modeling Approaches from
Agent-Based Simulations?

Fundamentally, an agent-based approach to modeling complex systems
differs from more traditional differential-equation based approaches in
that it represents a shift from force-on-force attrition calculations to
considering how high-level properties and behaviors of a systems
. emerge out of low level rules. The conceptual focus of agentbased
models shifts from finding a mathematical description of an entire
system to a low-level rule-based specification of the behavior of the
individual agents making up that system.

Table 6 compares the traditional reductionist approach to modeling

complex systems with complex adaptive system/agentbased

simulations.

Table 6. Comparison between

approaches to complex systems modeling

traditional and agent-based

Traditional (Reductionist) Agent-Based Simulation
Approach
degrees-of-freedom relatively few typically many
interactions typically weak and linear; need | usually strong and nonlinear;
to be hard-wired into model low-level agents continually
adapt to a changing
environment
characteristic length and ~ ] >>1
time scales
specification of can be difficult to specify
complex boundary analytically (say, as part of a very easy to implement
conditions partial differential equation
model)
more realistic; each combatant
model of individual | necessarily crude; assumes that | has its own unique history and
combatant? all combatants are the same | therefore its own unique way of
respondiong to the world
aggregation of variables | simpleminded aggregation of | sets of high-level variables are
low-level variables self-organized and emergent;
aggregate behavior is
fundamentally nonlinear and
- synergistic
- long term behavior solve for steady-state nonequilibrium behavior is
equilibrium solution more descriptive of long-term
dynamics
i sought-for behavior is either accounted for high-level behavior (that is not
h explicitly or is typically absent; | acounted for directly) emerges
focuses on force-on-force naturally from low-level rules;
attrition ratios focuses more on the overall
attrition process
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Swarm**

Swarm is a multi-agent simulation platform for the study of complex
adaptive systems. It is currently under development at the Santa Fe
Institute.”

The goal of the Swarm project is to provide the complex systems
theory research community with a fully general-purpose artificial-life
simulator. The system comes with a variety of generic artificial worlds
populated with generic agents, a large library of design and analysis
tools and a "kernel" to drive the actual simulation. These artificial
worlds can vary widely, from simple 2D worlds in which elementary
agents move back and forth to complex multi-dimensional "graphs”
representing multidimensional telecommunication networks in which
agents can trade messages and commodities, to models of real-world
ecologies.

Swarm has been intentionally designed to include as few ad-hoc
assumptions about the design of a complex system as possible, so as to
provide a convenient, reliable and standardized set of software tools
that can be tailored by researchers to specific systems.

Though the prototype has been written using the C programming
language, it is object-oriented in style. Future versions of Swarm will be
implemented using the Objective-C language. Objective-C is an
object-oriented extension of the C language that is widely available as
part of the GNU C compiler, and is available on the World-Wide-Web.

Everything in Swarm is an object with three main characteristics: Name,
Data and Rules. An object's Name consists of an ID that is used to send
messages to the object, a type and a module name. An object's Data
consists of whatever local data (i.e. internal state variables) the user
wants an agent to possess. The Rules are functions to handle any
messages that are sent to the object. The basic unit of Swarm is a
"swarm": a collection of objects with a schedule of event over those
objects. Swarm also supplies the user with an interface and analysis
tools.

The most important objects in Swarm, from the standpoint of the user,
are agents, which are objects that are written by the user. Agents
represent the individual entities making up the model; they may be
ants, plants, stock brokers, or combatants on a battlefield. Actions
consist of a message to send, an agent or a collection of agents to send
the message, and a time to send that message. Upon receiving a

" This section is based on the papers "An Overview of the Swarm

simulation systen,” by '94 Swarm Team, Santa Fe Institute and "The SWARM
simulation system and individual-based modeling,” by D. Hiebler.
» World-Wide-Web URL link =

http://www.santafe.edu/projects/swarm/.
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message, agents are free to do whatever they wish in response to the
message. A typical response will consist of the execution of whatever
code the user has written to capture the low-level behavior of the
system he is interested in. Agents can also insert other actions into the
schedule.

Three other properties of Swarm are noteworthy:

1. Hierarchy. In order to be better able to simulate the hierarchical
nature of many real-world complex systems, in which agent
behavior can itself be best described as being the result of the
collective behavior of some swarm of constituent agents, Swarm
is designed so that agents themselves can be swarms of other
agents. Moreover, Swarm is designed around a time hierarchy.
Thus, Swarm is both a nested hierarchy of swarms and a nested
hierarchy of schedules.

2. Parallelism. Swarm has been designed to run efficiently on
parallel machine architectures. While messages within one
swarm schedule execute sequentially, different swarms can
execute their schedules in parallel.

3. Internal Agent Models. One can argue that agents in a real
complex adaptive system (such as the economy) behave and
adapt according to some internal model they have constructed
for themselves of what they believe their environment is really
like. Sometimes, if the environment is simple, such models are
fixed and simple; sometimes, if the environment is complex,
agents need to actively construct hypothetical models and
testing them against a wide variety of assumptions about initial
states and rules and so forth. Swarm allows the user to use
nested swarms to allow agents to essentially create and manage
entire swarm structures which are themselves simulations of the
world in which the agents live. Thus, agents can base their
behavior on their simulated picture of the world.

The many kinds of problems that Swarm is well suited for include
economic models (with economic agents interacting with each other
through a market), the dynamics of social insects, traffic simulation,
ecological modeling, simulation games such as SimCity and SimLife,
and general studies of complex systems, cellular automata, and
artificial life.

Neural Networks

One might facetiously ask, "How can a three year old baby put a CRAY
X-MP supercomputer to shame?"’ The very serious answer is that "She can
recognize uncle Seymour's face infinitely faster!" No matter how
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powerful a computer one has, no matter how powerful an imaging
system and image recognition software one is using, it is a fact that a
young child will be infinitely better at recognizing certain patterns
than the state-of-the-art hardware/software combination. Aside from
the obvious fundamental question "Why?' an equally important
question is whether or not a child's internal processing is something
that can itself be mimicked or even directly simulated.

Part of the answer may lie in what the question itself tacitly assumes:
how a child processes information is distinctly different from the way
traditional computers process information. One is obviously parallel,
the other is serial; one is algorithmic, diligently following a specific set
of instructions one instruction at a time, the other is essentially "free
form," organizing information and defining computational route'
seemingly on-the-fly; etc. The full answer depends on how well we are
able to navigate our way on an emerging paradigm shift in the way
computation is itself understood.

Neural nets (NNs) represent a radical new approach to computational

" problem solving. The methodology they represent can be contrasted
with the traditional approach to artificial intelligence (AI). Whereas
the origins of Al lay in applying conventional serial processing
techniques to high-level cognitive processing like conceptformation,
semantics, symbolic processing, etc. — or in a top-down approach —
neural nets are designed to take the opposite -~ or bottomup —
approach. The idea is to have a human-like reasoning emerge on the
macro-scale. The approach itself is inspired by such basic skills of the
human brain as its ability to continue functioning with noisy and/or
incomplete information, its robustness or fault tolerance, its
adaptability to changing environments by learning, etc. Neural nets
attempt to mimic and exploit the parallel processing capability of the
human brain in order to deal with precisely the kinds of problems that
the human brain itself is well adapted for.

There is a strong connection between cellular automata (see page 81)
and neural networks. Fundamentally, CA represent a paradigm
whereby the conventional emphasis of looking for the origins of
complex behaviors in sets of "complex" building blocks is shifted to
an entirely different mode-of-thought in which complexity itself is
viewed as an emergent phenomenon built upon an assemblage of
possibly very "simple" parts. From a purely philosophical point of view,
it could also be argued that there is no better known example of a truly
emergent phenomenon than that of the emergence of consciousness
out of the large network of functionally "simple” (and certainly
unconscious) neuronal components that make up the human brain.
Now, while we have been inexcusably cavalier in our usage of terms
like "complex" and "simple” — no respectable neurophysiologist would
ever call a neuron simple! — it is safe to say that neural nets arguably
represent the prototypical complex system.
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Reduced to their essentials, CA are dynamical systems consisting of a
discrete cellular state space, the nodes of which contain one of a finite
number of discrete values, and evolve synchronously in time according
to local update rules. Very crudely speaking, a biological neural
network likewise consists of a large space of interconnected nodes
whose dynamical behavior is a local function of other nodes to which it
is connected. Artificial neural nets can be loosely thought of as being
nothing more than a set of biologically inspired CA rules.

There exist many excellent books and collections of papers on this
broad and rapidly growing subject. A recent book by Jubak [163]
provides a good nontechnical introduction. The collections edited by
Anderson and Rosenfeld [5] and Shaw and Palm [284] contain most of
the important early landmark papers. Some of the better texts are
those by Hecht-Nielson [130], Hertz, Krogh and Palmer [135], and
Peretto [247]. There are also journals that specialize in neural nets
such as Neural Computation, published by MIT and Neural Networks,
published by Pergammon.

A Short History

Table 7 lists some developments in neural net research. This list is by
no means exhaustive and is intended only to highlight some of the key
events. There are four main points to be taken from this table:

Table 7. A few key historical developments in neural net research

Year Developers Development
1943 McCulloch-Pitts first neuron model
1949 |  synaptic learning rule Hebb

1958 simple perceptron model Rosenblatt

1960 | least-mean-sqaure (LMS)/Delta-rule | Widrow and Hoff

1969 | Perceptrons (a critical look at what Minsky and Papert
neural nets can and cannot do)

1982 autoassociation Hopfield
1982 parallel distributed processing Feldman, et. al.
1983 Boltzman machine Hinton
1985 back-propagation learning rule Rumetlhart, et. al.
1990 i80170NX neural chip Intel Corporation

1. The first serious work on neural nets dates back to 1943, so that
while neural nets have been getting increasingly more press in
recent years, it cannot be said that they are of "recent origin."
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2. There is a thirteen year gap between the publication of Minsky
and Papert's enormously influential book called Perceptrons in
1969 and the publication of a mainstream neural net physics
paper by Hopfield in 1982, emphasizing the idea of memories
as dynamically stable attractor states. This is not necessarily
meant to imply that neural net research had not been going on
in the intervening years, but it is certainly true to say that
Minsky and Papert's powerful critique discouraged more than a
few researchers from entering the (at that time) fledgling field.

3.Long stretches of time sometimes pass between the
introduction of a basic design and when that design gains a
more practical utility with a concomitant learning rule. For
example, while it was known fairly early on that some of the
limitations of Rosenblatt's simple perceptron could be
overcome by adding "hidden" neurons, it was not until
Rumelhart,et.al.'s backpropagation rule was introduced in 1985
that an appropriate learning rule was finally found.

4. Just as for the study of cellular automata in general, for which
software is nice to have for prototyping and preliminary study
but are clearly inadequate for any large-scale simulation (lattice
gases, for example, would have remained nothing more than
an interesting theoretical exercise had it not been for
dedicated hardware simulators like RAP1 and CAM-6), neural
nets do not really come into their own as problem solvers unless
their designs are hard wired into silicon. The Intel chip listed
in table 7 is but one example of a growing number of
increasingly more powerful and fully programmable chips
appearing on the commercial market.

An Heuristic Discussion

Neural nets are designed to exploit the most powerful computational
characteristics of the human brain, most notably its efficiency at
pattern recognition. As mentioned earlier, for example, a
three-year-old child is considerably more adept at recognizing objects
and faces than even the most advanced artificial intelligence system
running on a top-of-the-line supercomputer. Moreover, the brain is
robust and fault-tolerant, easily deals with probabilistic, fuzzy or even
inconsistent information, and rapidly adapts to a changing
environment by "learning," and does so without having to be
continuously "re-programmed.” Although the analogy between brains
and NN is crude at best (for example, the nodes and interconnections
between the nodes of a neural network are gross oversimplifications of
the brain's actual structure), it is close enough that NNs are capable of
closely mimicking some of the brain's own functionality. In this
section we discuss a class of NNs known as multi-layer, feed-forward NNs
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that use the backpropagation learning rule. Such NNs are particularly
adept at solving general pattern recognition problems.

Consider the "simple" problem of correctly identifying a sequence of
handwritten characters (i.e. digits and letters). From a conventional
programming perspective, the task is more than a little bit daunting.
Although each character typically has a large set of unequal (and
possibly widely varying) representations, each of these representations
is valid. Some characters may appear darker than others, for example;
others may be hurriedly written so that some detail is washed out; still
others may be written in script rather than block-printed. Unless the
character-recognition software explicitly accounts for all possible
variations (or all possible 'templates”) of the representation of each
character, it is doomed to be imperfect from its inception. Even if a
massive look-up table is constructed, consisting of very many variations
of each character, some decision module must nonetheless also be
constructed to deal with samples that do not match any of the
pre-computed entries of the look-up table. The character-recognition
software can only be as good as its decision module. How is a character
to be identified if the sample is smudged, for example? While we may
take for granted the fact that our brain can easily ignore any "dirt" or
"smudges” that appear on an input to correctly identify the underlying
character, a smudged character can also easily be different enough
such that the smudged character will remain effectively unrecognizable
to the software.'®

Traditional software's basic problem — namely, how to reliably deal with
noisy and/or imprecise input - is the typical neural-net's strength. While
most software-based recognition schemes depend on pre-defined sets
of contingency rules to provide specific responses to inputs that do not
match any elements of the basic look-up table, neural-nets learn to
generalize from a basic set of input data, and thus require no special
programming to process noisy input. Just as traditional software can
only be as good as the algorithm that it implements, a neural-net can
only be as good as the data set on which it trains.

Defining and Training a Neural Network

A typical net consists of three layers: an input layer, an output layer and
one or more hidden layers (see figure 34). The input layer is chosen to
correspond in some way to the set of input data. For example, if the
input is to consist of images of handwritten characters, one might use a

1 The difference between two patterns is typically measured by

computing the Hamming Distance. The Hamming Distance between two binary
strings S, = 001001110 and S, = 010010111 is defined to be the number of
string-entries in which the digits are different. The Hamming distance

between S, and S, is therefore 5. The Hamming distance between two

handwritten characters, for example, may be defined as the number of on/off
pixels by which their two respective black-and-white digitized images differ.
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10 x 10 grid of neurons, with each neuron having either value 1 or 0
depending on whether or not a portion of the character overlays that
neuron. Similarly, the output layer is chosen to correspond to the set
of output data. If the output is to consist of the 26 letters of the
alphabet and the 10 numerical digits, a natural choice would be to
have a layer with 36 neurons corresponding to each possible character
or digit output. Unfortunately, choosing the size and number of
hidden layers involves a little bit of black-magic: aside from what are
essentially heuristic aids, there are no formal theorems specifying an
optimal design. It can be shown that (1) for the net to be able to solve
nontrivial problems there should be at least one hidden layer, and (2)
any net with more than two hidden layers is functionally equivalent to
a net with two hidden layers. The total number of neurons within the
hidden layers should (usually) be between 1/2 to 2 -1/2 times the
number of input neurons. In practice, it is best to remember that a net
with too few hidden neurons will be unable to learn what is required of
it; a net with too many hidden neurons will tend to overgeneralize
what it has learned.

Figure 34. Schematic representation of a multi-layer feed-forward
neural network

input hidden hidden output
layer 1 layer 2

Each of the nodes in the first hidden layer is connected to each input
node; their values depend on the weights assigned to each of these
connections. Likewise, each node of the second hidden layer (if one
exists) is connected to each node of the first hidden layer, and so on
until the last, or output, layer is reached (all of whose nodes are
connected to each node of the last hidden layer). Learning is the
process whereby the net adjusts the set of its internal weights so that
for each input fact the output state corresponds to the desired output.
The net is typically first run with a set of random weights so that its
initial output bares little relation to the input. As it "re-looks" at the
same set of input/output fact pairs many times, the net continuously
readjusts the weights so as to bring its processed output closer and
closer to the desired output. After some transient learning period that
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depends on the size of the network and number of input facts, a final
weight set is achieved such that the output to each fact is what it is
required to be.

" Using a Trained Net
‘ Once learning is completed, and for the same set of facts with which it
. was trained, the net may be used as a simple data-retrieval program: for
. each fact in the training set, it will correctly reproduce the desired output. The

net's real strength, however, lies in its ability to abstract and generalize
from this training set and thereby deal with inputs that do not match
any of the training facts. Having been trained on a particular set of 36
characters and digits, for example, corresponding to one trainer's
unique handwriting, the net will then be able to correctly identify the
characters input from a digitized sample of someone else's
handwriting. Each input/output fact pair will have been generalized so
that a much larger set of similar but unequal input handwriting
samples can be recognized as corresponding to the same output.

While the choice for the input space in the character-recognition
example may have been "obvious" - since we know that the output
depends only on the input image, our only problem is to find some
natural correspondence between a set of neurons and an arbitrary
input image — another strength of NN technology is that a net will
(using slightly anthropomorphic language) use whatever subset of input
Jacts that it decides is really important for predicting the desired output. Even if
the trainer is himself unsure of exactly what set of input facts are really
important (we will outline an example in a moment), as long as he
uses a list that is a super set of the list of facts that truly matter, the
neural net will experience no particular difficulty with training. In
other words, the net effectively learns to parse out and use only those
facts that are relevant to reach the desired conclusions. Other facts,
having nothing to do with the desired output, are acknowledged only
by being given essentially zero weight. The net will recognize them to
be unimportant and train itself to ignore them. By the same reasoning,
a net can also suggest that certain facts that the frainer considers to be
unimportant are in fact important in reaching a conclusion and should
not be ignored.

Consider a neural net approach to predicting when the NN trainer
himself will choose to take a coffee break. Obviously, many factors play
arole, both on a conscious and unconscious level. The amount of time
that has passed since the last break is clearly an important factor; but
constraints such as how close his work is to a deadline or how much
time is left until the analyst must leave for day are also important.
Perhaps when the height of graph-paper on the left-hand-side of his
desk exceeds some threshold, the analyst begins considering taking a
break? On the other hand, the decision to take a break may have
nothing at all to do with such factors as the day of the week, the
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temperature in a neighboring office or the color of the analyst's socks.
The input layer of a net designed to recognize the trainer-state/
decision-to-break pattern may consist of as many neurons as
analyst-state facts the trainer decides play an important role. One
neuron, for example, could correspond to the time elapsed since the
last break; another to how much time is left until the end of the day,
etc. As long as the input space contains the set of facts that do play an
important role in finally yielding either a yes-break or no-break
decision from the analyst (a set which may indeed be a-priori
unknowable), the net will learn to ignore the unimportant part of the
input space. The output may consist of a single neuron, which takes
the value 1 when the decision is to take a break, and value 0 when the
decision is to keep working.

General Model Development: A Short Primer

While the details of designing a neural net solution to a particular
problem can be quite involved, the basic strategy is fairly simple. The
important point to remember is that designing a net is almost an
antithesis of conventional programming. There are no rules or
algorithms to write (except for the underlying code defining the
learning algorithm, of course). Instead, the effort that is
conventionally put into the programming end of a solution is replaced
by the effort that must be put into constructing a sample solution set,
one that must often be put together without an explicit or an a-priori
knowledge of the method of solution. For example, using the example
of image recognition ("Uncle Seymor's face"), while most of us are
instantly able to recognize the faces of even the most casual of our
acquaintances, very few of us are able to describe exactly how we are
able to accomplish this task.

Fundamentally, all feed-forward nets follow the same basic steps of a
model development cycle:

1. define the problem

2. define the input-output fact set
3. define the neural net structure
4. train

5. test

It cannot be stressed strongly enough that the first step, defining the
problem, is far from being a simple task. Great care must be taken to
identify precisely what one wishes for the net to "learn.”
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There is a telling story about how the army recently went about
teaching 2 NN to identify tanks set against a variety of environmental
backdrops. The programmers correctly fed their multi-layer net
photograph after photograph of tanks in grasslands, of tanks in
swamps, of tanks surrounded by trees, of hills without tanks, and so on.
The idea was for the net to get a broad enough sampling of scenes with
tanks both present and absent so as to be able to tell, in general,

» whether a tank was or was not present in an arbitrary image. After
. many trials and many thousands of iterations, the NN finally learned
all of the images in the carefully prepared database. When the
presumably trained net was tested on other images that were not part
of the original training set, it failed to do any better than what would
be expected by chance alone. The problem was that the input/training
fact set was inadvertently statistically corrupt. The database consisted
mostly of images that showed a tank only if there were heavy clouds, or
the tank itself was immersed in shadow or there was no sun at all. The
Army's neural net had indeed identified a latent pattern, but it
unfortunately had nothing to do with tanks: it had effectively learned to
distinguish bright from not-so-bright scenes.

v

The obvious lesson to be taken away from this amusing example is that
how well a net "learns" the desired associations depends almost entirely
on how well the database of facts is defined.

Once the input-output fact pair has been put together, the next
challenge is to find an appropriate net design; i.e. to determine how
many input and output neurons should be used and how many hidden
layers should be placed between them. Typically, the form of the
inputoutput facts in the database determine the number (and type) of
input and output neurons. In the handwriting recognition example we
used earlier in which a net is to learn the 26 letters of the alphabet, for
example, a natural choice was to use N x M input neurons to encode
an input image and 26 output neurons, each of which corresponds to a
given letter. If, instead, the problem is to construct a financial
predictor, where the input data consists of such facts as the consumer
price index, the price of crude oil, the unemployment rate, and so on,
and the desired output is an estimate of the Dow-Jones stock average, it
is natural to design a net that has as many input neurons as there are
available input facts and one output neuron whose value is equal to the
predicted Dow-Jones average. Countless other examples could of
course also be imagined. The point is that once the problem has been
carefully defined and the available information structured in some
form, the number of input and output neurons is essentially
determined.

Backpropagation Algorithm

i The backpropagation learning rule (also called the generalized delta
rule) is credited to Rumelhart and McClelland [271]; refer to figure 34
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for a schematic of a multi-layered neural net's structure. Notice that
the design shown, and the only kind we will consider in this section, is
strictly feed forward. That is to say, information always flows from the
input layer to each hidden layer, in turn, and out into the output layer.
There are no feedback loops anywhere in the system.

One or more hidden layers are sandwiched between the input and
output layers and, for the moment, consist of an arbitrary number of
neurons. While there are, unfortunately, no rigorous theorems
specifying what number should be used for a given problem, useful
heuristics do exist.

The backpropagation learning rule gives a prescription for adjusting
the initially randomized set of synaptic weights (existing between all
pairs of neurons in each successive layer) so as to minimize the
difference between the neural net's output for each input fact and the
output with which the given input is known (or desired) to be
associated. The backpropagation rule takes its name from the way in
which the calculated error at the output layer is propagated backwards
from the output layer to the N* hidden layer to the (N-1)® hidden
layer, and so on. Because the learning process requires us to "know"
the correct pairing of inputoutput facts beforehand, this type of
weight adjustment is called supervised learning.

Pseudo-Code

Without derivation, we now present a seven-step pseudo-code
implementation of the backpropagation learning rule. It is to be
applied for each pattern ". Assume that we have a neural net with L
layers (1 =1, 2, ..., L). Let h/ represent the output of the i neuron in
the 1* layer; h” is therefore equal to the i input, 6,. The weight of the
connection between h," and h/'is labeled w;"

e Step 1: Initialize all weights to small random values.

® Step 2: Set the input layer equal to the input values for the first
input/output fact pair: i.e. let h,’ = 6,°=1 for all values of k.

® Step 3: Propagate the input signal foward through the various
layers of the net; i.e. calculate hf = fa(Z; wfjhjl-_l) , where f,(x) =
1/(1 + €*) is a sigmoidal threshold function and a is a
parameter added to control the steepness of the curve.

e Step 4: Calculate the differences A's for the output layer:
AII-‘ =f{1(hf‘)(2f—hf‘), where f,'(x) is the derivative of f,(x), is
the net's calculated output and is the actual output of the net,
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® Step 5: Obtain the differences A's for each of the preceeding
layers by propagating the errors backwards:
A7 = fo(hTDE WhAL 1= L L, . 2,

* Step 6: Adjust the weights according to w; —> w; + & w;, where

Ow; = nAfh]l-"l and 1] is an adjustable learning constant.

® Step 7: Go back to step 2 and repeat for the next pattern. Stop
when the difference between the computed and desired output
is less than some pre-assigned threshold.

The basic backpropagation algorithms is in practice often very slow to
converge. Moreover, it can sometimes get stuck in undesired spurious
attractor states. This is an unfortunate artifact that plagues all
cost-function minimization schemes. In recent years, however, a
number of alternative formulations to improve convergence have been
suggested. Consider the learning constant 1), that -effectively
determines how fast the system moves down a "hill" of the energy
surface. Although smaller values of 1 lend stability, they also tend to
slow down the convergence to unreasonably slow rates of convergence.
On the other hand, if is too large, the algorithm tends to oscillate and
become unstable. Among the methods suggested to alleviate these
problems are (1) using successively smaller values of the learning
constant, (2) continuously adapting the value of the learning constant
to how well the convergence is doing, and (3) adding a so-called
momentum-term. A fourth method is to add a bit of noise at each step.
The idea in this last method is to use the noise to knock the system out
of an undesired local minima.

Since their introduction, feed-forward backpropagating neural nets
have been used to "solve" a wide range of interesting problems,
striking in their diversity. Applications include playing backgammon,
recognizing hand-written zip-codes, financial bond rating, visual
pattern recognition, classification of seismic signals, sonar target
recognition, and navigating a car, among many others.

Example: NETtalk

An important and influential application of a multilayered
backpropagating neural net is NETtalk, designed by Sejnowski and
Rosenberg in 1987. NETtalk learns to convert English text into speech
and displays many of the characteristics of leaning normally ascribed to
human learning, including a power-law form for its learning curve and
an increase in its ability to generalize as the size of its training set
increases. Moreover, NETtalk is robust and fault tolerant. Its
performance degrades gracefully and not catastrophically if its set of
synaptic weights is damaged. Once trained, NETtalk is also able to
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relearn a given fact set much faster after some damage has been done
to it than if it had to start from scratch with the original training.

Generating speech from written text is a profoundly difficult problem
to solve using conventional programming techniques. Part of the
difficulty is due to the fact that words are not always pronounced
according to how they are spelled. Although we are all taught the
"rules" when we are young, as our experience grows we learn that each
rule has its fair share of exceptions. Even a simple sentence like "This
is a sentence," shows that spelling can be a poor cue for pronunciation.
The first two s's are pronounced differently, but they both appear at
the end of words and are both preceded by an i. The third s is
pronounced the same way as the first but instead appears at the
beginning of a word. NETtalk deals with this problem by looking at
groups of letters to provide context sensitivity.

NETtalk consists of 203 input neurons, one hidden layer composed of
80 neurons and 26 output neurons. The input consists of a string of
203 letters, with a 7-site long window that slides over the text to provide
the necessary context sensitivity for the net to be able to learn to
pronounce the middle letter. The output consists of 26 elementary
speech sounds called phonemes. Phonemes are similar to the
pronunciation guides found in standard dictionaries. Several sets of
phonemes are available.

Sejnowski and Rosenberg used two different sets of words for training:
(1) 1024 words taken from phonetic transcriptions of informal
continuous speech by children, and (2) a subset of the 1000 most
commonly used words selected from Miriam Webster's Pocket Dictionary.

NETtalk managed to learn the informal speech database well enough
after only a few training cycles (with each cycle being one complete
pass through the database) to utter intelligible speech. Ten passes were
sufficient for it to utter fully understandable words, and 50 cycles
proved enough for NETtalk to attain a 95% accuracy rate. Initially,
NETtalk was able to learn only gross features such as the difference
between consonants and vowels. Since it always responded with the
same vowel whenever any vowel was input and with the same
consonant whenever a consonant was input, in this early phase
NETtalk sounded like a babbling child. Gradually, NETtalk learned to
recognize the boundaries between words and was thus able to begin
uttering pseudowords. As its learning was further enhanced, NETtalk's
output steadily improved to the point of intelligibility.

Perhaps the most striking result is an early demonstration of fault
tolerance. When Sejnowski and Rosenberg artificially "damaged” the net
by adding some amount to random noise to the synaptic weights, they
found that NETtalk's ability to "speak" degraded only gradually and
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not suddenly, as might be expected of a conventional rule based
systems from which a subset of rules was suddenly deleted.

Other Designs

This brief survey has only touched upon one of the more familiar
neural net designs, chosen mainly for its pedagogical value. There are
of course a large number of other important models, some of which
have wide applicability, some of which are optimized for a particular
kind of problem:

® Adaptive resonance. One obvious drawback to wusing a
backpropagating neural net is the need to retrain the net every
time a new problem is added to the training set database. While
the net should, in principle, have no problem in learning a new
fact, there is the possibility that the newly trained net will forget
previously stored information. This is sometimes loosely referred
to as the stability-plasticity problem. One neural net design that
addresses this concern is called adaptive resonance, and is due to
Carpenter and Grossberg [41]. A critical feature of adaptive
resonance is its ability to switch between a learning state in which
the net's internal parameters can be modified (plasticity) and a
fixed state wherein previously stored data cannot be damaged
(stability).

® Supervised learning. The backpropagation algorithm assumes that
the output part of a desired input-output set of pairs is known
a-priori. In practice, of course, one often does not know the
output. It is certainly reasonable to expect a net to effectively tell
the trainer what latent patterns and similarities exist within a
clump of data. For this one needs an entirely different neural net
design, one that is optimized for finding common features across
a range of input patterns in an unsupervised fashion. A well
known exemplar of this class is Kohonen's selforganizing feature
map [178]. A more general approach to unsupervised learning is
called competitive learning, described by Rumelhart [271]. There
are still other schemes, such as Hecht-Nielsen's counterpropagation
networks, that combine supervised and unsupervised learning in
one net.

® Tailoring a design to a specific problem. Algorithms such as
backpropagation can be viewed as general purpose designs. By
modifying a net's size, topology, data set, or energy function,
such nets can be applied to a wide variety of problems. However,
there are problems for which either such a general-purpose
design does not suffice or for which a better, optimized, design
can be constructed. One such example is Fukushima's cognitron
and larger-scaled neocognitron neural net designs [104], which are
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specifically tailored to recognize handwritten characters. Both
the cognitron and neocognitron can learn with or without a
supervisor and represent an approach based on exploiting the
anatomy and physiology of the mammalian visual system.

Lessons of Complex Systems Theory

The major lesson of complex systems theory is that complex behavior
is usually an emergent self-organized phenomenon built upon the
aggregate behavior of very many nonlinearly interacting "simple"
components. It advocates, in essence, a simplicity breeds complexity
approach to the study of complex systems.

The critical points to remember are...

® Nonlinearity. Without nonlinear interactions there can be no
deterministic chaos in simple systems and no complex behavior
in complex systems. Moreover, nonlinear systems appear to be
much more pervasive than linear systems. By virtue of
nonlinearity, the behavior of the "whole" is not just a simple
aggregate of the constituent "parts.”

® Interconnectivity. How the parts of a complex system are
interconnected is just as important as what those parts are and
what does parts do.

® Context/Wholeness. The effect that parts have on the remainder of
the system - literally, how those parts are defined within the
complex system - is determined by the context of the whole
within which those parts exist. In referring to any part P of a
complex system, one must also point to various other parts with
which P interacts (or may interact in the future).

® Process: Simple dynamical systems are characterized by simple
attractors — fixed points, limit cycles, quasiperiodic and chaotic
(or strange) attractors. Although one can also try to characterize
the behavior of complex systems with these attractor "labels,”
such a description would entirely miss the essence of what it
means to be a complex system. A complex system embodies
process, a ceaseless search for a better "solution” for an
ill-defined, amorphous -ever receding "problem.”" In Zen-like
fashion, you can say that the harder one tries to pin-down the
behavior of a complex system with some static measure, the
further one is from understanding what the complex system is
really doing.
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® Adaptability. The essence of a complex adaptive system is that its
constituent parts are not Newtonian "billiards" that react blindly
(but in well-defined fashion) to the world around them, but are
instead endowed with an ability to sense, learn from, and adapt to
. their environment as they and the environment both evolve in
time. A related lesson is that individual solutions (or evolutionary
timelines) are essentially non-reproducible; a given system may
- "solve" a given problem in many different ways.
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® Emergence. Perhaps the central concept of complex systems
theory is that high-level behaviors emerge naturally out a
brewing soup of low-level interactions. A flock of birds (or
"Boids," see page 73) does not need a central direction to behave
in an apparently orchestrated manner. Nowhere on the lattice
rule-level in Conways Life CA game (see page 87) is there any
hint of the particle-like glider that spontaneously emerges on a
higher level, and then apparently obey a dynamics all its own.
The lesson is that where there is an assemblage of very many
nonlinearly interacting parts, there is a good possibility of
emergent behaviors on higher levels than those defining the
underlying interactions. Moreover, such emergent behavior can
appear on multiple spatial and temporal levels.
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Land Warfare and Complexity Theory:
Preliminary Musings

In this section we outline a few preliminary musings on the
applicability of nonlinear dynamics and complex systems theory to the
understanding and/or representation of land warfare. An in-depth
analysis and discussion of the ideas outlined below will be provided in
Part II of this report.”’

The fundamental question that is addressed, at least indirectly, in this
report, and more fully in the follow-on paper, is "What does complexity
theory tell us about land warfare?”

This question really embodies three separate but interrelated issues
(see figure 35):

1. Complexity theory
2. Land warfare

3. Modeling/Simulation

Figure 35. Interrelated issues of addressing land warfare as a
complex system

s

complexity theory and land werfare

®, = / are discussed in this section
K a’wm :.
"

- =

. land .'_." ] -'.',- .,
‘"_* a

Complexity theory refers to any and all conjectures, hypotheses, theories,
experiments, mathematical models, etc. having to do with the
understanding of complex systems exhibiting a complicated (i.e.
chaotic) behavior. In particular, complexity theory is assumed to
include both nonlinear dynamics and complex systems theory, the

1 Land Warfare and Complexity, Part II: An Assessment of the Applicability of
Nonlinear Dynamics and Complex Systems Theory to the Representation of Land
Warfare is scheduled to be delivered to sponsor for review 1 July, 1996.
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latter including a multitude of sub-disciplines such as artificial life,
cellular automata, genetic programming, neural networks, etc.

Land warfare embodies all of the myriad problems and issues of land
warfare, including combat attrition, command and control,
coordination, intelligence, tactics and strategy, training, etc.

Modeling/Simulation is a generic label for the overarching context
within which possible interconnections between the tools and
methodologies of complexity theory as well as the issues and problems
of land warfare can be fully explored.

In this last category, the most important question to ask is "What do you
expect to get out of a particular model?” A model that is designed to
explicitly mimic reality as closely as possible in order to predict the
outcome of real battles is very different from a simulation designed
merely to act as a synthetic combat environment within which
combatants can obtain "realistic” training. Sandwiched in between
these two extremes of modeling lies another class of pseudo-realistic
models designed to provide insights only into selected key elements of
the general pattern of behavior on the battlefield. While complexity
theory may potentially offer interesting insights into to all three levels
of modeling and/or simulation, it is likely to provide its strongest
support to these middle-level models. A more in-depth discussion of
this very important point will be given in part II of this paper.

If one main theme runs consistently throughout all of the preceding
discussion in this report, it is that complexity theory embodies an
enormously large set of concepts, mathematical tools and
methodologies. Consequently, even interpreting the basic question of
what complexity theory tells us about land warfare is not at all an easy
task. Instead of asking "What does complexity theory tell us about land
warfare?” a better question is "How does idea I or methodology M, born of
complexity theory, help us to understand problem P or issue S in land warfare?”
Moreover, possible answers to this question should not be confined to
finding applications on only the tactical level of combat but should
include the operational and strategic levels of warfare as well.

It is easy to imagine the most seductive application of complexity
theory to land warfare, namely some 10-or-20-years down-the-road
artificial-life-like simulation of battle, complete with impressively
realistic 3D virtual reality graphics. It is more likely, however, that the
real, albeit less immediately seductive, applications will lie in the
conceptual trenches, out of the way and beneath the surface, altering a
field commander's frame of reference for seeing what is really
happening on the battlefield, establishing new criteria for collecting
data, improving the way information is processed and communicated,
providing real-time tactical and strategic decision aids, and providing
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tools for extracting and understanding any subtle and/or otherwise
"hidden" patterns of behavior on the battlefield.

It must also be remembered — and appreciated - that complexity
theory is still very much in its infancy. The Santa Fe Institute in New
Mexico, for example, which is widely recognized as being a leading
research center for complex systems, was founded just a decade ago in
1984. Moreover, many of the analytical tools and models developed for
the study of complex systems, such as genetic algorithms, genetic
programming and agentbased simulations, have been either
developed or refined as part of the artificial-life research effort that
itself sprang up only in 1987. Consequently, it would be grossly unfair
to complex systems theory to expect to find a mature set of tools and
methodologies at such an early stage of this burgeoning field's
development.

Table 8. A sampling of tools from nonlinear dynamics and
complex systems theory

Nonlinear Dynamics/Chaos Complex Systems Theory
power spectra cellular automata

fractal dimensions

genetic algorithms

Kolmogorov-Sinai entropy genetic programming
Lyapunov exponents neural networks
attractor reconstruction self-organized criticality
time-delayed embedding agent-based simulations
chaotic control SWARM
etc. etc.

It is also safe to say that, at its current stage of development, much of
complex systems theory is concerned primarily with simulations and
simulation-engines — such as the Santa Fe Institute's SWARM (see page
114) - that run them. So much so that it is not entirely incorrect to
think of "complex systems theory” as being synonymous with
"agent-based simulation."

Table 8 lists some of the analytical tools of nonlinear dynamics and
complex systems theory that were discussed in earlier sections of this
report.

Framing the Problem

Figure 36 summarizes the more salient points of the overall discussion
and is meant to provide a basic framework for forging a connection
between complexity theory and land warfare.
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Figure 36. A framework for forging a connection between complexity
theory and land warfare
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Figure 36 shows that there are four levels of applicability of complexity
theory: level-1, consisting of specific analytical and mathematical tools
such as cellular automata, genetic algorithms, genetic programming,
and so on; level-2, consisting of general simulation systems such as
SWARM, within which complex systems can be modeled; level3,
consisting of observations of behavior of specific systems; and level4,
consisting of sets of universal behaviors, such as the principle of
self-organized criticality (see page 101).

Ideally, of course, one would like to take whatever insights complexity
theory has come up with, or will come with, on the highest level
(level4) and apply them directly to the issues and problems of land
warfare. The fact that this is exceedingly unlikely to happen in the
foreseeable future is due in no small measure to the fact that, as of this
writing, there are precious few "universal behaviors”" populating level-4.
Indeed, as alluded to in an earlier section (see page 101),
self-organized criticality is arguably the only existing holistic
mathematical theory of self-organization in complex systems!
Therefore, if there is anything at all that falls under the rubric of
complexity theory that is generally applicable to the problems of land
warfare, it will most likely consist of specific sets of tools applied to
specific problems, along with whatever insights can be gained by using
general-purpose simulators such as SWARM to act as simulation
"engines." There remains the possibility that complexity theory might
shed some light on how battlefields may be configured (or compelled
to self-organize) to achieve a maximum adaptability to a changing
environment.

Figure 36 also shows that there are four levels of land warfare to which
the tools and methodologies of complexity theory can be applied: (1)
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tactical, (2) operational, (3) strategic and (4) general strategic, which refers
to the socio-political strategies that are followed over long periods of
time and which can therefore span over several conflicts.

» Finally, figure 36 illustrates that there are three levels on which
complexity theory can be applied to land warfare:

® Level-1. This is the most basic metaphor level to which most general
discussions have been heretofore confined. This level consists of
constructing and elaborating upon similar sounding words and
images that most strongly suggest a "philosophical resonance”
between behaviors of complex systems and certain aspects of
what happens on a battlefield. The Clauswitzian images of "fog of
war" and "friction" come to mind immediately [24]. There is
nothing wrong, per se, with confining a discussion to this level,
but one must always be mindful of the fact that metaphors are
easily abused and "philosophical resonances" do not imply real
connections.

® Level-2. This is the pragmatic and/or experimental level on
which real-world data is mined to confirm or deny that there is
more to a possible connection between complexity theory and
land warfare than mere "philosophical resonance” alone. The
best work along these lines has so far been conducted by
Tagarev, et. al. [298] and is discussed briefly below. Tagarev, et.
al. provide evidence of deterministic chaos in tactical,
operational and strategic dynamics of a wide class of military
behavior.

® Level3. This is the "workhorse" level on which specific
methodology borrowed from complexity theory is applied
directly to specific issues and problems of land warfare. This
might not be as intellectually provocative or satisfying as making
a direct, one-to-one mapping between universal patterns of
behavior of complex systems in general and patterns of combat
on the battlefield (although this is remotely conceivable in some
form); however, using genetic algorithms to evolve tactics in
real-time in the heat-of-battle is impressive nonetheless. Most of
the ideas and conjectures outlined in the following sections fall
squarely into this third level of connections.

Chaos in combat models

A fundamental lesson of nonlinear dynamics theory is that one can
almost always expect to find some manifestation of chaos whenever
nonlinearities are present in the underlying dynamics of a model. This
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fundamental lesson has potentially significant implications for even the
simplest combat models.

Miller and Sulcoski [217], for example, report fractal-like properties
and a sensitivity-to-initial conditions in the behavior of a discretized
model of the Lanchester equations (augmented by nonlinear auxiliary
conditions such as reinforcement and withdrawal/ surrender
thresholds).

Non-Monoticities and Chaos

A 1991 RAND study [73] uncovered chaotic behavior in a certain class
of very simple combat models in which reinforcement decisions are
based on the state of the battle. The study looked at non-monoticity
and chaos in combat models, where "monotonic behavior" is taken to
mean a behavior in which adding more capabilities to only one side
leads to at least as favorable an outcome for that side.

The presence of nonmonoticities has usually been interpreted to mean
that there is something wrong in the model that needs to be "fixed"
and has been either treated as an anomaly or simply ignored. The
main thrust of the RAND report is that, while non-monoticities often
do arise from questionable programming skills, there is a source of
considerably more problematic non-monoticities that has its origins in
deterministic chaos.

The RAND study found that "a combat model with a single decision
based on the state of the battle, no matter how precisely computed,
can produce non-monotonic behavior in the outcomes of the model
and chaotic behavior in its underlying dynamics.” [73]

The authors of the report draw four basic lessons from their study:

® models may not be predictive, but are useful for understanding
changes of outcomes based on incremental adjustments to
control parameters

* scripting the addition of battlefield reinforcement (i.e. basing
their input on time only, and not on the state of the battle)
generally eliminates chaotic behavior

® one can identify input parameters figuring most importantly in
behavior of non-monoticities -~ these are the size of
reinforcement blocks and the total number of reinforcements
available to each side

¢ Lyapunov exponents are useful to evaluate a model's sensitivity
to perturbations
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In general, the RAND report [73] concludes that

“In any combat model that depends for its usefulness on
monotonic behavior in its outcomes, modeling combat decision
based on the state of the battle must be done very carefully. Such
modeled decisions can lead to monotonic behavior and chaotic
behavior and the only sure ways (to date) to deal with that
behavior are either to remove state dependence of the modeled
decisions or to validate that the model is monotnonic in the
region of interest.”

[

Minimalist Modeling

Dockery and Woodcock, in their massive treatise The Military Landscape
[77], provide a detailed discussion of many different "minimalist
models" from the point of view of catastrophe theory and nonlinear
dynamics. Minimalist modeling refers to "the simplest possible
description using the most powerful mathematics available and then"
adds layers "of complexity as required, permitting structure to emerge
from the dynamics." Among many other findings, Dockery and
Woodcock report that chaos appears in the solutions to the Lanchester
equations when modified by reinforcement. They also discuss how
many of the tools of nonlinear dynamics (see table 8) can be used to
describe combat.

Using generalized predator-prey population models to model
interactions between military and insurgent forces, Dockery and
Woodcock illustrate (1) the set of conditions that lead to a periodic
oscillation of insurgent force sizes, (2) the effects of a limited pool of
individuals available for recruitment, (3) various conditions leading to
steady state, stable periodic oscillations and chaotic force-size
fluctuations, and (4) the sensitivity to small changes in rates of
recruitment, disaffection and combat attrition of simulated force
strengths.

This kind of analysis can sometimes lead to counter-intuitive
implications for the tactical control of insurgents. In one instance, for
example, Dockery and Woodcock point out that cyclic oscillations in
the relative strengths of national and insurgent forces result in
recurring periods of time during which the government forces are
weak and the insurgents are at their peak strength. If the government
decides to add too many resources to strengthen its forces, the chaotic
model suggests that the cyclic behavior will tend to become unstable
(because of the possibility that disaffected combatants will join the
insurgent camp) and thus weaken the government position. The
model instead suggests that the best strategy for the government to
follow is to use a moderately low level of military force to contain the
insurgents at their peak strength, and attempt to destroy the insurgents
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only when the insurgents are at their weakest force strength level of the
cycle.”®

Generalizations of Lanchester's equations

In 1914, Lanchester introduced a set of coupled ordinary differential
equations as models of attrition in modern warfare. The basic idea
behind these equations is that the loss rate of forces on one side of a
battle is proportional to the number of forces on the other. In one
form of the equations, known as the directed-fire (or square-law) model,
the lanchester equations are given by the linear equations dR(t) /dt = -
o, B(t) and dB(t)/dt = - o, R(t), where R(t) and B(t) represent the
numerical strengths of the red and blue forces at time t, and o; and o,
represent the constant effective firing rates at which one unit of
strength on one side causes attrition of the other side's forces. An
encyclopedic discussion of the many different forms of the lanchester
equations is given by Taylor ([299], [300]). '

While the lanchester equations are particularly relevant for the kind of
static trench warfare and artillery duels that characterized most of
World War I, they are too simple and lack the spatial
degrees-of-freedom needed to realistically model modern combat. The
fundamental problem is that they idealize combat much in the same
way as Newton's laws idealize the real chaos and complexity ridden
physics of the world. Likewise, almost all lanchester equation based
attrition models of combat suffer from many basic shortcomings:

¢ determinism, whereby the outcome of a battle is determined
solely as a function of the initial conditions, without regard for
Clausewitz's "fog of war" and "friction”

* use of effectiveness coefficients that are constant over time
o static forces

* homogeneous forces with no spatial variation

® no combat termination conditions

e the assumption that target acquisition is independent of force
levels

® no consideration of the suppression effects of weapons

® andsoon...

18 Reference [77], pages 137-138.
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Perhaps the most important shortcoming of virtually all lanchester
equation based models is that such models rarely, if ever, take into
account the human factor; ie. the psychological and/or
decision-making capability of the individual combatant.

Generalizations of the lanchester equations have included:

® an analytical extension of Lanchester's equations to allow
feedback between movement and attrition; this is discussed by
Epstein [90]

¢ a general exploitation of the analogy between the form of the
lanchester equations and Lottka-Voltera equations describing
predator-prey interactions in natural ecologies

® Partial differential equations to include maneuver; primarily
work done by Protopopescu at the Oak Ridge National
Laboratory

® Fuzzy differential equations to allow for imprecise information;
see Dockery, [74]

® Stochastic differential equations to describe attrition processes
under uncertainty

One can speculate that there might be a way to generalize the
lanchester equations to include some kind of an internal aesthetic. That
is to say, to generalize the description of the individual combatants to
include an internal structure and mechanism with which they can
adaptively respond to an external environment. A discussion of this
idea will be given in Part II of this report. See, for example, N. Smith's
"Calculus of ethics,” [289], [290].

Demonstration of chaos in war using historical data

An earlier section, describing work by Richardson [266] and Dockery
and Woodcock [77], has already alluded to the possibility that certain
gross combat attrition statistics appear to follow a power-law scaling
very reminiscent of the characteristic fractal-like behavior observed in
self-organized critical (SOC) systems (see page 101).

Tagarev, et. al. [298] also provides extensive historical evidence of
chaos in tactical, operational and strategic levels of military activity.
Tagarev, e. al. examine (1) US fixed-wing aircraft losses during the
Vietnam war, (2) US Army casualties in western Europe during World

War II, and (3) historical trends in US defense spending.
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Nonlinear dynamics and chaos in arms-race models

G. Mayer-Kress ([96], [117] and [210]) has written many papers on
nonlinear dynamics and chaos in arms-race models and has suggested
approaches to socio-political issues. His approach is to analyze
computational models of international security problems using
nonlinear, stochastic dynamical systems with both discrete and
continuous time evolution. Many of Mayer-Kress' arms-race models are
based on models of population dynamics first introduced by L. F.
Richardson after World War I [266].

Mayer-Kress finds that, for certain ranges of values of control
parameters, some of these models exhibit deterministic chaos. In one
generalization of a discrete version of Richardson's equations that
models the competition among three nations, for example,
Mayer-Kress finds that the two weaker nations will form an alliance
against the stronger nation until the balance of power shifts [210]. The
alliance formation factor and economical constraints induce
nonlinearities into the model that result in multiple stable solutions,
bifurcations between fixed point solutions and time-dependent
attractors. He has also identified parameter domains for which the
attractors are chaotic.

Combat simulation using cellular automata

If one abstracts the essentials of what happens on a battlefield,
ignoring the myriad layers of detail that are, of course, required for a
complete description, one sees that much of the activity appears to
involve the same kind of simple nearest-neighbor interactions that
define cellular automata (See page 81). Woodcock, Cobb and Dockery
[323] in fact show that highly elaborate patterns of military force-like
behavior can be generated with a small set of cellular automaton-like
rules.

In Woodcock, et al's model, each combatant — or automaton - is
endowed with a set of rules with which it can perform certain tasks.
Rules are of four basic varieties:

® Situation Assessment, such as the determination of whether a given
automaton is surrounded by friendly or enemy forces

® Movement, to define when and how a given automaton can move;
certain kinds of movement can only be initiated by threshold
and/or constraint criteria

® Combat, which governs the nature of the interaction between
opposing force automata; a typical rule might be for one
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automaton to "aim fire" at another automaton located within
some specified fight radius

® Hierarchical Control, in which a three-level command hierarchy is
. established; each lower-level echelon element keys on those in
the next higher echelon on each time step of the evolution

These basic rules can then be augmented by additional rules to (1)
simulate the impact that terrain barriers such as rivers and mountains
have on the movement of military forces; (2) provide a capability for
forces to respond to changing combat conditions (for example, a
reallocation of firepower among three types of weapons: aimed
firepower, area firepower and smart weapons firepower), and (3)
replace entities lost through combat attrition. Figure 37 shows a
schematic of three sample rules. A further extension involves relating
notional features of battlefield geometry to the structure of real
battlefields [77].

Figure 37. Three sample rules in Woodcock, et. al's CA combat
model

"grey"” attempts to
shoot "black"

"black"” attempts to
shoot "grey"
three neighbors: one-neighbor:
advance retreat

Woodcock, et. al. stress that the goal of CA-based model of combat is
not to codify a body of rules that comes as close as possible to the actual
behavioral rules obeyed by real combatants; rather, the goal lies in
"finding the simplest body of rules that both can generate nontrivial
global combatlike phenomena and provide a new understanding of
the combat process itself by extracting the maximum amount of
behavioral complexity from the least complicated set of rules." [323]
Additional details are discussed in chapters 3.1 and 3.2 of reference
N [77].

s Computer viruses (" computer counter-measures")

A computer virus can be thought of as an autonomous agent. It is a
computer program that tries to fulfill a goal or set of goals without the
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intervention of a human operator. Typically, of course, viruses have
rather simple and sinister goals of tampering with the normal
operation of a computer system and/or computer network and then
reproducing in order to spread copies of themselves to other
computers. Computer viruses are particularly interesting to artificial
life researchers because they share many of the properties of biological
viruses.

From a military standpoint, computer viruses can be used in two ways:
(1) as computer countermeasure agents to infiltrate enemy systems, or
(2) as constructive "cyberspace allies" that, for example, can be
programmed to maintain the integrity of large databases.

Intelligent Software Agents

Anyone who has spent even a small amount of time "surfing” the
World-Wide-Web for information can attest to how difficult it is to find
useful information. To be sure, the WWW is filled with untold
numbers of glossy pages overflowing with all kinds of information. A
quick use of a web search-engine such as Lycos usually suffices to
uncover some useful sites. But what happens when one needs to find
some information about a particularly obscure subject area? And what
happens when one begins relying on one's web connection for more
and more of one's daily workload: e-mail, stock quotes, work
scheduling, selection of books, movies, travel arrangements, video
conferencing, and so on?

A powerful emerging idea that helps the human "web-surfer" deal with
this increasing workload and that is based in part on the
methodologies of autonomous agents and genetic algorithms, is that of
Intelligent Software Agents."” Software agents are programs that essentially
act as sophisticated personal assistants. They act as intermediaries
between the interests of the user and the global information pool with
which the user has traditionally dealt directly. Software agents engage
the user in a cooperative process whereby the human operator inputs
interests and preferences and the agent monitors events, performs
tasks, and collects and collates useful information. Because software
agents come endowed with an adaptive "intelligence," they become
gradually more effective at their tasks as they begin learning the
interests, habits and preferences of the user.

From a military standpoint, intelligent software agents can be used for
adaptive information filtering and integration and as tactical picture agents,
scouring and ordering the amorphous flood of battlefield and
intelligence data.

19 See, for example, the collection of articles in Communications of the

ACM, Volume 37, No. 7, July 1994.
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Agent-based simulations

For many obvious reasons, the most natural application of complexity
theory to land warfare is to provide an agent-based simulation of combat.
The basic idea is to model land combat as a co-evolving ecology of
| local-rule-based autonomous adaptive agents.

L]

. An Irreducible Semi-Autonomous Adaptive Combat Agent (ISAACA)
| represents a primitive combat unit (infantryman, tank, transport
vehicle, etc.) that is equipped with the following characteristics (see
figure 38): '

® a default local rule set specifying how to act in a genenc
environment (i.e. an embedded "doctrine")

¢ goals directing behavior ("mission”

® sensors generating an internal map of environment ("situational
awareness"

* an internal adaptive mechanism to alter behavior and/or rules;
adaptation is genetic-algorithmbased (see page 93) — each ISAACA
effectively plays out a scenario using a genetically-encoded set of
possible tactics; where fitness is the expected payoff with respect
to some internal value system

An ISAACA collective, represented schematically in figure 39, consists
of local and global commanders, each with their own command radii,
and obeys an evolving C? hierarchy of rules. A global rule set
determines combat attrition and reinforcement. Nonlinear feedback
exists among combatants (measure -> counfermeasure >
countercountermerasure -> ..) and between combatants and the
environment.

Note that this approach is similar in spirit to a cellular automaton (CA)

model (see page 81) but augments the conventional CA framework in
three ways: (1) evolution proceeds not according to a fixed set of rules,
but to a set of rules that adaptively evolves over time; (2) individual
. states of cells (or combatants) do not just respond to local information,
S but are capable of non-ocal information (via an embedded C?
topology) and command hierarchy; and (3) global rule (i.e.
command) strategies are evolved via a genetic algorithm (orders
N pumped down echelon are based on evolved strategies played out on
possible imprecise mental maps of local and/or global commanders).

-

Insofar as complex adaptive systems can be regarded as being
essentially open-ended problem-solvers, their lifeblood consists mostly
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of novelty. The ability of a complex adaptive system to survive and
evolve in a constantly changing environment is determined by its
ability to continually find - either by chance, or experience, or more
typically both - insightful new strategies to increase its overall "fitness"
(which is, of course, a constantly changing function in time).

Figure 38. Field-of-view of a single ISAACA
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Military campaigns likewise depend on the creative leadership of their
commanders, success or failure often hinging either on the brilliant
tactic conceived in the heat of combat or the mediocre one issued in
its place.

To be realistic, such novelty must not consist solely of a randomly
selected option from a main-options list — which is a common
approach taken by conventional warfare models - but must at least
have the possibility of being as genuinely unanticipated in the model
as it often is on a real battlefield. To this end, each command-agent
(and to a somewhat more limited extent, each ISAACA) must possess
both a memory and an internal anticipatory mechanism which it uses
to select the optimal tactic and/or strategy from among a set of
predicted outcomes. This is an important point: except for doctrine
and the historical lessons of warfare, the super-set of tactics must not be
hard-wired in.

Such local rule-based agent-simulations are well suited for

¢ studying the general efficacy of combat doctrine and tactics

¢ exploring emergent properties and/or other "novel" behaviors
arising from low-level rules (even doctrine if it is well encoded™)

b It is an intriguing speculation that doctrine as a whole may contain
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® capturing universal patterns of combat behavior by focusing on a
reduced set of critical drivers

® suggesting likelihood of possible outcomes as a function of initial
conditions

® use as training tools along the lines of some commercially
available agentbased "games" such as SimCity, SimFarm and
SimLife [325]

® providing nearreal-time tactical decision aids by providing a
"natural selection” (via genetic algorithms, see page 93) of superior
tactics and/or strategies for a given combat situation

® giving an intuitive "feel” for how and/or why unanticipated
events occur on the battlefield, and to what extent the overall
process is shaped by such events

Figure 39. Schematic representation of a ISAACA simulation
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Ideally, one would hope to find universal patterns of behavior and/or
tactics and strategies that are independent of the details of the
makeup of individual ISAACAs.

both desirable and undesirable latent patterns that emerge only when allowed
to "flow" through a system of elementary agents. An agent-based model of
combat may provide an ideal simulation environment in which to explore such

possibilities.
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Agent-based simulations ought not be used either to predict real
battlefield outcomes or to provide a realistic simulation of combat.
While commercial networkable 3D virtual-reality games such as
DOOM? are much better suited to providing a virtual combat
environment for training purposes, agent-based simulations are
designed to help understand the basic processes that take place on the
battlefield. It is not realism, for its own sake, that agent-based
simulations are after, but rather a realistic understanding of the drivers
(read: interactivity, decision-making capability, adaptability, and so on)
behind what is really happening.

Tactics and strategy evolution using genetic algorithms

Genetic algorithms have been shown to be powerful tools for general
combinatorial optimization search problems; see page 93. One obvious
application of genetic algorithms that has immediately found its way
into the artificial life research community involves their use as sources
of the "adaptive intelligence” of adaptive autonomous agents in an
agent-based simulation. A related application that is of particular
interest to the military strategist and/or battlefield commander, is that
of direct strategy and/or tactics development..

Figure 40. Schematic representation of a strategy landscape
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a Id Software, World-Wide Web URL link = http://www.idsoftware.com.
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Virr, Fairley and Yates [310], for example, have proposed using a
genetic algorithm as the foundation of an Automated Decision
Support System (ADSS). Carter, et al, [42] suggest using
genetic-algorithm-derived strategies for "smart tanks." Crowston [61]
uses genetic algorithms to search for alternative organizational forms,
which has potential applications for rethinking the optimality of
military command and control structures.

Figure 40 shows a schematic representation of what might be called a
"strategy landscape.” The strategy landscape represents the space of all
possible global strategies that can be followed in a given scenario.
Generally speaking, a genetic-algorithm-based tactics- or strategy-
"optimizer" consists of an evolutionary search of this landscape for
high-pay-off strategies using whatever local information is available to a
combatant. The shape of the landscape is determined by the fitness
measure that is assigned to various tactics and/or strategies. It aslo
changes dynamically in time, as it reponjds to the actual search path
that is being traversed.

Time-series analysis

Time-series analysis deals with the reconstruction of any underlying
attractors, or regularities, of a system from experimental data
describing a system's behavior; see page 57. Techniques developed
from the study of nonlinear dynamical systems and complex systems
theory provide - powerful tools whereby information about any
underlying regularities and patterns in data can often be uncovered.
Moreover, these techniques do not require knowledge of the actual
underlying dynamics; the dynamics can be approximated directly from
the data. These techniques provide, among other things, the ability to
make short- (and sometimes long-) term predictions of trends in a
system's behavior, even in systems that are chaotic.

Relativistic information

Relativistic information theory is a concept introduced by Jumarie®
and has been suggested as a possible formalism for describing certain
aspects of military command and control processes by Woodcock and
Dockery [77]. The basic idea is that a generalized entropy is endowed
with four components, so that it is equivalent to a four-vector and may
be transformed by a Lorentz transformation (as in relativity theory).
These four components consists of: (1) the external entropy of the
environment (H_ ), (2) the internal entropy of the system (H,), (3) system
goals, and (4) the internal transformation potential, which measures the

2 Jumarie, G., "A relativistic information theory model for general

systems Lorentz transformation of organizability and structural entropy,”
International Journnal of Systems Science, Volume 6, 1975, 865-886.
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efficiency of the system's internal information transformation. An
additional factor, called the organizability, plays the role of "velocity."
Woodcock and Dockery show that it is possible to use relativistic
information theory to compare the relative command and control
system response of two command structures to the world around them.
The quantity of interest is dH,/dH,, or the rate of change of the
internal information environment with respect to changes in the
surrounding environment.

Exploitation of Characteristic Time Scales

A fundamental property of nonlinear systems is that they generally
react most sensitively to a special class of aperiodic forces. Typically,
the characteristic time scales of the optimal driving force match at all
times the characteristic time scales of the system. In some cases the
optimal driving force as well as the resulting dynamics are similar to
the transients of the unperturbed system.”

The information processing in complex adaptive systems and the
general sensitivity of all nonlinear dynamical systems to certain classes
of aperiodic driving forces are both potentially exploitable features.
Recall that one of the distinguishing characteristics of complex systems
is their information processing capability. Agents in complex adaptive
systems continually sense and collect information about their
environment. They then base their response to this information by
using internal models of the system, possibly encoding and storing data
about novel situations for use at a later time. According to the
edge-of-chaos idea (see page 76), the closer a system is to the
edge-of-chaos — neither too ordered nor too chaotic - the better it is
able to adapt to changing conditions. In Kauffman's words, "organisms
sense, classify, and act upon their worlds. In a phrase, organisms have
internal models of their worlds which compress information and allow
action...Such action requires that the world be sufficiently stable that
the organism is able to adapt to it. Were worlds chaotic on the time
scale of practical action, organisms would be hard pressed to cope."

Now compare this state-of-affairs with Retired USAF Colonel John
Boyd's Observe-Orient-Decide-Act (OODA) loop. In Boyd's model, a
system responds to an event (or information) by first observing it, then
considering possible ways in which to act on it, deciding on a particular
course of action and then acting. From a military standpoint, both
friendly and enemy forces continuously cycle through this OODA
process. The objective on either side is to do this more rapidly than the
enemy; the idea being that if you can beat the enemy to the "punch”
you can disrupt the enemy's ability to maintain coherence in a

23

A. Hubler, "Modeling and control of complex systems: paradigms and
applications," pages 5-65 in [82].
# Page 232 in reference [171].
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changing environment. One can also imagine exploiting the relative -
phase relationship between friendly and enemy positions within the
OODA loop. For example, by carefully timing certain actions, one can
effectively slow an enemy's battle-tempo by locking the enemy into a
perpetual Orient-Orient mode.
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Basic Concepts

Summary and Conclusion

This paper provides the basic theoretical framework and mathematical
background necessary to intelligently discuss the ideas of nonlinear
dynamics and complex systems theory and how they might apply to
land warfare issues. Part II of this study, to be delivered to sponsor for
review 1 July, 1996, will consist of a detailed assessment of the general
applicability of complexity theory to the representation of land
warfare.

Overall, the paper provides four separate levels of discussion:

¢ Basic Concepts. The first level consists of a discussion of the

basic concepts of nonlinear dynamics and complex systems
theory, including nonlinearity, chaos, phase space, attractors,
fractals, predictability, efc., and thus provides a working technical
vocabulary.

Mathematical Tools. The second level consists of a discussion of
specific mathematical tools that can be applied to the study of
complex systems in general, such as Poincare plots, Lyapunov
exponents, genetic algorithms, etc.

Basic Lessons Learned. The third level consists of a discussion of
basic lessons learned from both nonlinear dynamics and
complex systems theory.

Possible Applications. The fourth level consists of an
introductory survey of possible applications of the tools and
concepts of complexity theory to land warfare. This last level is
preliminary and is intended only to "plant a few seeds" for an
in-depth analysis in part II of this study.

A quickreference glossary of all of the terms and basic concepts
appearing in the main text are given in Appendix B.

Mathematical Tools

Below is a partial summary of the mathematical tools discussed in
earlier sections:
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® Qualitative Characterization of Chaos. Four qualitative methods
for verifying the presence of chaos in a system were discussed.
These included looking at the system's time-dependent behavior,
using a Poincare plot to reduce the dimensionsality, calculating
the autocorrelation function and observing the power spectrum for
the system.

¢ Quantitative Characterization of Chaos. Three sets of
quantitative measures of chaos were introduced, including
Lyapunov exponents (that measure the exponential divergence of
initially nearby trajectories), generalized fractal dimensions (that,
roughly speaking, measure the minimum number of variables
needed to specify a chaotic attractor), and the Kolmogorov-Sinai
entropy (that measures the rate of information gain per unit
time in observing a chaotic system).

¢ Time-Delayed Embedding. The embedding technique is a
method for reconstructing a state space from time-series data. It
assumes that if the embedding dimension is large enough, the
behavior of whatever system is responsible for generating the
data can be described by a finite dimensional attractor. Its main
strength lies in providing detailed information about the
behavior of degrees-offreedom other than the ones that are
directly observed.

¢ Chaotic Control. Chaotic control exploits the fact that chaotic
systems exhibit sensitivity to initial conditions to stabilize regular
dynamical behaviors and thereby effectively "direct” chaotic
trajectories to a desired state.

¢ Cellular Automata. Cellular automata are a class of spatially and
temporally  discrete, deterministic = dynamical systems
characterized by local interaction and an inherently parallel
evolution. They serve as prototypical mathematical models of
complex systems, and appear to capture many essential features
of complex self-organizing cooperative behavior observed in real
systems.

¢ Genetic Algorithms. Genetic algorithms are a class of heuristic
search methods and computational models of adaptation and
evolution based on natural selection. Genetic algorithms mimic
and exploit the genetic dynamics underlying natural evolution to
search for optimal solutions of general combinatorial
optimization problems. This very powerful tool is used frequently
as the backbone of many artificial life studies.

* Agent-Based Simulations. Agent-based simulations of complex
adaptive systems are predicated on the idea that the global -
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behavior of a complex system derives entirely from the low-level
interactions among its constituent agents. By relating an
individual constituent of a complex adaptive system to an agent,
one can simulate a real system by an artificial world populated by
interacting processes. Agent-based simulations are particularly
adept at representing real-world systems composed of
individuals that have a large space of complex decisions and/or
behaviors to choose from.

¢ Swarm. Swarm (currently under development at the Santa Fe
Institute) is a multi-agent simulation platform for the study of
complex adaptive systems. The goal of the Swarm project is to
provide the complex systems theory research community with a
fully general-purpose artificial-life simulator. Swarm has been
intentionally designed to include as few ad-hoc assumptions
about the design of a complex system as possible, so as to
provide a convenient, reliable and standardized set of software
tools that can be tailored by researchers to specific systems.

® Neural Networks. Neural nets represent a radical new approach
to computational problem solving. Their botfom-up methodology
stands in stark contrast to traditional fop-down approach to
artificial intelligence (AI). The approach is inspired by such
basic skills of the human brain as its ability to continue
functioning with noisy and/or incomplete information, its
robustness or fault tolerance, its adaptability to changing
environments by learning, etc. Neural nets attempt to mimic
and exploit the parallel processing capability of the human
brain in order to deal with precisely the kinds of problems that
the human brain itself is well adapted for; in particular, pattern
recognition.

Basic Lessons Learned

Nonlinear Dynamics

The fundamental lesson of nonlinear dynamics is that a dynamical
system does not have to be "complex” or to be described by a large set
of equations, in order for the system to exhibit chaos — all that is
needed is three or more variables and some embedded nonlinearity.

Among the basic lessons of nonlinear dynamics and chaos that are of
particular relevance to the decision maker are...
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¢ Short Term Predictions. Given sufficient data, time series
analysis permits one to make shortterm predictions about a
system's behavior, even if the system is chaotic. Moreover, these
prediction can be made even when the underlying dynamics is
not known.

¢ Long-term Trends. If the attractors of a system are known or can
be approximated (say, from available historical time series data),
long-term trends can be predicted. Knowledge about visitation
frequencies of points on an attractor provides insight into the
probabilities of various possible outcomes. Lyapunov exponents
quantify the limits of predictability.

® Qualitative Understanding of the Battlefield. The information
dimension can be used to estimate the minimum number of
variables needed to describe a system. Moreover, if a system can
be shown to have a small non-integer dimension, it is probable
that the underlying dynamics are due to nonlinearities and are
not random.

Complex Systems

The fundamental lesson of complex systems theory is that complex
behavior is usually an emergent self-organized phenomenon built
upon the aggregate behavior of very many nonlinearly interacting
"simple" components.

The most important points to remember are...

¢ Nonlinearity. Without nonlinear interactions there can be no
deterministic chaos in simple systems and no complex behavior
in complex systems. Moreover, nonlinear systems appear to be
much more pervasive than linear systems. By virtue of
nonlinearity, the behavior of the "whole" is not just a simple
aggregate of the constituent "parts.”

¢ Interconnectivity. How the parts of a complex system are
interconnected is just as important as what those parts are and
what does parts do.

¢ Context/Wholeness. The effect that parts have on the remainder
of the system - literally, how those parts are defined within the
complex system - is determined by the context of the whole
within which those parts exist.

® Process. A complex system embodies process, a ceaseless search
for a better "solution” for an ill-defined, amorphous ever
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Warfare

receding "problem." In Zen-like fashion, you can say that the
harder one tries to pin-down the behavior of a complex system
with some static measure, the further one is from understanding
what the complex system is really doing.

® Adaptability. The essence of a complex adaptive system is that its
constituent parts are not Newtonian "billiards" that react blindly
(but in well-defined fashion) to the world around them, but are
instead endowed with an ability to sense, learn from, and adapt to
their environment as they and the environment both evolve in
time.

* Emergence. Perhaps the central concept of complex systems
theory is that high-level behaviors emerge naturally out a
brewing soup of low-level interactions. A flock of birds does not
need a central direction to behave in an apparently orchestrated

manner. The lesson is that where there is an assemblage of very

many nonlinearly interacting parts, there is a good possibility of
emergent behaviors on higher levels than those defining the
underlying interactions. Moreover, such emergent behavior can
appear on multiple spatial and temporal levels.

Possible Applications of Complexity Theory to Land

The last section of this paper outlined a few preliminary musings on
the applicability of nonlinear dynamics and complex systems theory to
the understanding and/or representation of land warfare. An in-depth
analysis and discussion of the ideas presented in that section will be
provided in Part II of this report.

The fundamental question is "What does complexity theory tell us about
land warfare?” The last section provided a framework for a possible
answer to this question by focusing on (1) four levels of applicability of
complexity theory (ranging from general tools, to specific simulation
laboratories, to high-level properties of specific systems to universal
behaviors), (2) four levels of land warfare (tactical, operational,
strategic and general strategic), and (3) three levels on which
complexity theory can be applied to land warfare:

® Metaphor Level. This level consists of constructing and
elaborating upon similar sounding words and images that most
strongly suggest a "philosophical resonance" between behaviors

of complex systems and certain aspects of what happens on a
battlefield.
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¢ Pragmatic and/or Experimental Level. This is the level on which
real-world data is mined to confirm or deny that there is more to
a possible connection between complexity theory and land
warfare than mere "philosophical resonance” alone.

¢ Direct Application Level. This is the "workhorse" level on which
specific methodology borrowed from complexity theory is
applied directly to specific issues and problems of land warfare.

There is also the possibility that complexity theory might shed some
light on how battlefields may be configured (or compelled to
self-organize) to achieve a maximum adaptability to a changing
environment.

The remainder of the last section provided a brief overview of some
specific applications:

® Chaos in combat and arms-race models. A fundamental lesson of
nonlinear dynamics theory is that one can almost always expect
to find some manifestation of chaos whenever nonlinearities are
present in the underlying dynamics of a model. This
fundamental lesson has potentially significant implications for
even the simplest combat models. Several instances of chaos in
simple combat models were cited, including work by Miller and
Sulcoski [217], Dockery and Woodcock [77] and a recent RAND
study [73].

® Generalizations of Lanchester's Equations. Generalizations
include an analytical extension to allow feedback between
movement and attrition (Epstein, [90]), an exploitation of the
analogy between Lanchester's equations and the Lottka-Voltera
equations describing natural ecologies, and partial, fuzzy and
stochastic differential equations.

¢ Demonstration of chaos in war using historical data. Tagarev, et.
al.'s work was cited as providing evidence of chaos in tactical,
operational and strategic levels of military activity.

¢ Combat simulation using cellular automata and adaptive
autonomous agents. Woodcock, Cobb and Dockery's cellular
automata model of combat is cited [323], as well as a more
elaborate adaptive autonomous agent model in which individual
combatants are equipped with (1) a default rule set, (2) goals
directing behavior, (3) sensors to generate a map of the
environment, and (4) an internal mechanism to adaptively and
selectively alter behavior over time. Reasons for studying such
models are discussed.
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® Tactics and strategy evolution using genetic algorithms. It is
suggested that genetic algorithms be used to develop strategy
and/or tactics. Genetic-algorithm-based tacticss or strategy-
"optimizers" would consist of an evolutionary search of a
"strategy landscape” for high-pay-off strategies using whatever
local information is made available to a combatant.

® Intelligent software agents. Software agents are essentially
sophisticated personal assistants. They act as intermediaries
between the interests of the user and the global information
pool with which the user has traditionally dealt directly. From a
military standpoint, intelligent software agents can be used for
adaptive information filtering and integration and as tactical picture
agents, scouring and putting order on the amorphous flood of
battlefield and intelligence data.

¢ Time-series analysis. Techniques developed from nonlinear
dynamics and complex systems theory provide powerful tools
with which underlying regularities and patterns in data can often
be uncovered.

® Exploitation of characteristic time scales of a combat. A
fundamental property of nonlinear systems is that they generally
react most sensitively to a special class of aperiodic forces. An
analogy between John Boyd's Observe-Orient-Decide-Act (OODA)
loop and information processing at the edge-of-chaos in complex
systems suggests ways of interfering with an enemy's OODA
"timing" and thereby disrupting the enemy's ability to maintain a
coherence in a changing environment.
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Appendix A: World Wide Web Nonlinear
Dynamics and Complex Systems Theory
Resources

* Appendix A provides both a brief subject-sorted listing of information
sources currently available on the World Wide Web (WWW) and an
unsorted but much more extensive alphabetized listing in
HTMILformat.

Subject-Sorted WWW Link Listing

In this section, a total of 91 WWW Universal Resource Locator (URL)
links are sorted into the following 16 categories:

® General Sources

¢ Artificial Intelligence

¢ Artificial Life

¢ Artificial Life Simulation and Research Groups
® Autonomous Agents

¢ Cellular Automata

® Chaos

® Fractals

® Fuzzy Logic

® Genetic Algorithms

¢ Genetic Programming

* Intelligent Software Agents
® Neural Nets

- ' ® Nonlinear Dynamics

¢ Software

® Time-Series Analysis
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e Artificial Intelligence (University of Washington):

General Sources

Santa Fe Institute: http://www.santafe.edu/

Complex Systems Research at the Beckman Institute:
http://www.cesr.uiuc.edu/

Complex Systems at Australia National University:
http://life.anu.edu.au:80/complex systems/
complex.html

The Chaos Network, applications of chaos theory to the social
sciences: http://www-cse.ucsd.edu:80/users/rik/

Complex Systems Bibliographies:
ftp://ftp.cs.umanitoba.ca/pub/bibliographies/index
.html

Bibliography of Measures of Complexity:
http://www. fmb.mmu.ac.uk/~bruce/combib

Complex Adaptive Systems Information:
http://www.seas.upenn.edu/ale/cplxsys.html

Principia Cybernetica: http://pespmcl.vub.ac.be/

Complex Systems Information Network:
http://www.csu.edu.au/complex/compsys.html

Virtual Library on Complex Systems:
http://life.csu.edu.au/vl_complex/libraryl.html

Artificial Intelligence

¢ Artificial Intelligence (Stanford):

http://www-cs.stanford.edu/profile/ai.html

http://www.cs.washington.edu/research/projects/ai/
www/ ai.html

® International's Artificial Intelligence Center:

http://www.ai.sri.com:80/aic/
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® Journal of Artificial Intelligence Research:

http://www.cs.washington.edu/research/jair/
home.html

* Artificial Intelligence (Georgia Institute of Technology):

http://www.cc.gatech.edu/cogsci/ai.html

¢ Distributed Artificial Intelligence Laboratory (UMass):

http://dis.cs.umass.edu/

Artificial Life

Adaptive Systems and Artificial Life:
http://doradus.einet.net/galaxy/Engineering-and-T
echnology.html

Philosophy of Artificial Life Bibliography:
http://mugwump.ucsd.edu/bkeeley/work-stuff/Alife
Bib.html

Artificial Life Bibliography:
£tp://cognet.ucla.edu/pub/alife/papers/
alife.bib.gz

A Semi-annotated Artificial Life Bibliography:
http://www.cogs.susx.ac.uk/users/ezequiel/alife-p
age/ alife.html

Artificial Life Digest:
http://www.cogs.susx.ac.uk/users/ezequiel/alife-p
age/ complexity.html

Fundamental Algorithms of Artificial Life:
http://alife.santafe.edu/alife/topics/simulators/
dret/ dret.html

Artificial Life Simulation and Research Groups

¢ Links to various Artificial Life Groups:

http://www.krl.caltech.edu/brown/AL-groups.html

¢ Autonomous Agents/Alife Group at MIT:

http://agents.www.media.mit.edu/groups/agents/

¢ Latent Energy Environments Project:

http://www-cse.ucsd.edu:80/users/£il/
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® The Avida Artificial Life group:
http://www.krl.caltech.edu/avida/Avida.html

* Distributed Intelligent Agents Group:
http://ai.eecs.umich.edu/diag/homepage.html

® Autonomous Agents Research Group:
file://alpha.ces.cwru.edu/pub/agents/home/html .

Autonomous Agents

¢ Autonomous Agents Group at MIT:
http://agents.www.media.mit.edu/groups/agents/

¢ Autonomous Agents Group at Case Western Reserve University:
http://yuggoth.ces.cwru.edu/

® Research on Autonomous Agents at Stanford:
http://csli-www.stanford.edu/csli/9394reps/agents9

394-nilsson.html

¢ Software Agents Mailing List:
http://www.smli.com/research/tcl/lists/AGENTS/inde
x.html#163

¢ Autonomous Agents Research at Buffalo:
http://www.cs.buffalo.edu/~jweber/autoagent.html

¢ Distributed Intelligent Agents Group at the University of Michigan:
http://ai.eecs.umich.edu/diag/homepage.html

Cellular Automata

¢ Cellular Automata Frequently Asked Questions (FAQ):
http://alife.santafe.edu/alife/topics/cas/ca-faq/c

a-fag.html

® The Cellular Automata Simulation System: .
http://www.cs.runet.edu/~dana/ca/cellular.html

¢ Cellular Automata Web:
http://alife.santafe.edu/alife/topics/ca/cawedb
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Chaos

Fractals

Cellular Automata Bibliography Database:
http://www.ima.umn.edu/bibtex/ca.bib

Usenet Cellular Automata Newsgroup:
news:comp.theory.cell-automata

Evolving Cellular Automata:
http://www.santafe.edu/projects/evca/

Applied Chaos Laboratory at Georgia Tech:
http://acll.physics.gatech.edu/aclhome.html

Chaos Bibliography:
http://www.uni-mainz.de/FB/Physik/Chaos/
gservices.html

Chaos e-Print Archive at Los Alamos:
http://xxx.lanl.gov/archive/chao-dyn/

Chaos Group at the University of Maryland at College Park:
http://www-chaos.umd.edu/

The Chaosgruppe (Munchen):
http://www.nonlin.tu-muenchen.de/chaos/chaos_e.htm
1l

Exploring Chaos and Fractals (MIT):
http://www.lib.rmit.edu.au/fractals/exploring.html

Fractals FAQ: ,
http://www.cis.ohio-state.edu/hypertext/faqg/usenet
/fractal-faqg/faq.html

Fractal Images:
http://www.acm.uiuc.edu:80/rml/Gifs/Fractal/

Fractal Pictures and Animations:
http://www.cnam.fr/fractals.html
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® Fractal Explorer:
http://www.vis.colostate.edu/~userl1209/fractals/in

dex.html
¢ Fractal Database: http://spanky.triumf.ca/ -
Fuzzy Logic .

® Fuzzy Logic Archive:
http://www.quadralay.com/www/Fuzzy/Fuzzy.html

® Fuzzy Logic FAQ:
http://www.cis.ohio-state.edu/hypertext/faq/usenet
/fuzzy-logic/partl/fag.html

® Fuzzy Logic Repository:
ftp://ntia.its.bldrdoc.gov/pub/fuzzy

Genetic Algorithms

® Illinois Genetic Algorithm Repository:
http://gal4.ge.uiuc.edu/

¢ Genetic Algorithms FAQ:
http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/project/
ai-repository/ai/html/faqs/genetic/top.html

® Interactive Genetic Art:
http://robocop.modmath.cs.cmu.edu:8001/htbin/mjwge
nformI

® Genetic Music: http: //nmt.edu/~jefu/notes/notes.html

¢ Genetic Algorithm Digest Archives:
ftp://ftp.aic.nrl.navy.mil/pub/galist

® Genetic Algorithms Tutorial: -
£ftp://129.82.102.183/pub/TechReports/1993/tr-103.p *
8.2
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Genetic Programming

Genetic Programming FAQ:
http://wwwhost.cc.utexas.edu/cc/staff/mccoy/gp/FAQ
-toc.html

Genetic Programming Tutorial:
http://dcpul.cs.york.ac.uk:6666/mark/top_ga.html

Genetic Programming in C++ FAQ:
http://www.salford.ac.uk/docs/depts/eee/gpfaq.html

Genetic Programming Source at
UCL:http://www.cs.ucl.ac.uk/intelligent systems/ge

netic_programming.html

Genetic Programming Bibliography:
ftp://cs.ucl.ac.uk/genetic/biblio/

Genetic Prograniming FTP site:
ftp://ftp.io.com/pub/genetic-programming

Intelligent Software Agents

Software Agents:
http://hitchhiker.space.lockheed.com/pub/AGENTS/ht
docs/agent-home.html

Intelligent Software Agents Resources:
http://retriever.cs.umbc.edu:80/agents/

Intelligent Agents Mailing List (by thread):
http://www.smli.com/research/tcl/lists/AGENTS/
index.html#163

MIT Media Lab: http://www.media.mit.edu/

Intelligent Software Agents (University of Maryland
Baltimore County):http://www.cs.umbc.edu/agents/

Neural Nets

A Basic Introduction To Neural Networks:
http://ice.gis.uiuc.edu/Neural/neural.html
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An Introduction to Neural Nets:
http://www.mindspring.com/~zsol/nnintro.html

Neural Networks FAQ:
http://www.eeb.ele.tue.nl/neural/neural_FAQ.html “

Collection of Neural Net Bibliographies:
http://glimpse.cs.arizona.edu:1994/bib/Neural/ v

IEEE Neural Networks Council:
http://www.ieee.org:80/nnc/index.html

International Neural Network Society:
http://sharp.bu.edu/inns/

Nonlinear Dynamics

Software

Nonlinear Dynamics Archive: £tp://lyapunov.ucsd.edu/pub

Nonlinear Dynamics e-print Archive at Los Alamos:
http://xyz.lanl.gov/

Nonlinear Dynamics and Topological Time Series:
http://tl13.lanl.gov/~nxt/intro.html

Institute of Nonlinear Science at UC San Diego:
http://inls.ucsd.edu/

Nonlinear Dynamics at UC Santa Cruz:
http://noether.ucsc.edu/groups/nonlinear/research.

html

Nonlinear Dynamics Sites:
http://www.ucl.ac.uk/~ucesjph/resources/uk.html

Artificial Life Software at Santa Fe Institute: .
http://alife.santafe.edu/alife/software/

Artificial Life Software Repository:
http://www.cs.cmu.edu/afs/cs/project/ai-repository

/ai/areas/alife/systems/0.html
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“

Cellular Automata Simulator for PC Windows:
ftp://ftp.Germany.EU.net/pub/research/softcomp/Ali
fe/rudy-rucker/

Complex Systems Software Repository at Australian National
University: £tp://1ife.anu.edu.au/pub/complex_ systems

WinLife (a PC Windows implementation John Conway's Life rule):
ftp://ftp.Germany.EU.net/pub/research/softcomp/Ali
fe/packages/winlife

WinCA (a fast PC Windows simulator):
ftp://£ftp.Germany.EU.net/pub/research/softcomp/Ali
fe/packages/winca

PC Windows implementation of Craig Reynolds "Boids":
ftp://£ftp.Germany.EU.net/pub/research/softcomp/Ali

fe/packages/boids/

Time Series Analysis

¢ Nonlinear Dynamics and Topological Time Series Analysis Archive:

http://tl3.lanl.gov/~nxt/intro.html
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Alphabetized WWW Link Listing in HTML format

<p>

<center><h1>Complex Systems Links</H1></center>

<p>

<A NAME="aa">

</CENTER>

<p>

<hr size=7mm>

<p>

<CENTER><H2>

<A HREF="#A">A</A>

<A HREF="#B">B</A>

<A HREF="#C">C</A>

<A HREF="#D">D</A>

<A HREF="#E">E</A>

<A HREF="#F">F</A>

<A HREF="#G">G</A>

<A HREF="#H">H</A>

<A HREF="#I">I</A>

<A HREF="#]">]</A>

<A HREF="#K">K</A>

<A HREF="#L">L</A>

<A HREF="#M">M</A>

<A HREF="#N">N</A>

<A HREF="#0">0</A>

<A HREF="#P">P</A>

<A HREF="#Q">Q</A>

<A HREF="#R">R</A>

<A HREF="#S">8</A>

<A HREF="#T">T</A>

<A HREF="#U">U</A>

<A HREF="#V">V</A>

<A HREF="#W">W</A>

<A HREF="#X">X</A>

<A HREF="#Y">Y</A>

<A HREF="#Z">Z</A></H2>

</CENTER>

<p>

<hr size=7mm>

<p>

<DT><DD><H1><A NAME="A">A</A></HI1>

<OL>

<DT><DD><LI><a href="http://ice.gis.uiuc.edu/Neural/neural. html">A Basic Introduction To Neural
Networks</a>

<DT><DD><LI><a href="http://www.cogs.susx.ac.uk/users/ezequiel/alife-page/ alife.html">A Semi-annotated
Artificial Life Bibliography</a>

<DT><DD><LI><A HREF="http:/ /www.krl.caltech.edu/~adami/">Chris Adami's Homepage</A>

<DT><DD><LI><A HREF="http:/ /www.ens.fr/bioinfo/www/francais/AB.html">Adaptive Behavior Journal</A>

<DT><DD><LI><a href="http:/ /www-ksl.stanford.edu/people/bhr/ index.html">Adaptive Intelligent Systems</a>
(Stanford University)

<DT><DD><LI><A HREF="http:/ /iserv.iki.kfki.hu/adaptlab.html">Adaptive Systems Laboratory</A>

<DT><DD><LI><A href= "http://doradus.einet.net/galaxy/Engineering-and-Technology.htm!">Adaptive Systems
and Artificial Life</A>

<DT><DD><LI><a href="http://borneo.gmd.de/AS/pages/as.html">Adaptive Systems Research Group</A>
German National Research Center for Computer Science
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<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/afarm/">Afarm</A>

<DT><DD><LI><A href= "http:/ /yezdi.www.media.mit.edu/people/yezdi/AGENTS-SUMMARY.HTML">Agents,
infobots, knowbots...-Summary</a> (MIT)

<DT><DD><LI><A HREF=http://ai.iit.nrc.ca/ai_companies.html>AI Companies</A>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/aquarium/">Aquarium</A> (ftp)

<DT><DD><LI><a href="http://www.public.iastate.edu/~ailab/ homepage.html">Aritificial Intelligence group</a>
at Iowa State University

<DT><DD><LI><A href=
http:/ /www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/other/repositories.html>
Al Repositories and Resource Lists</A>

<DT><DD><LI><a href="http://www.cs.wisc.edu/~shavlik/uwai.html">AI Research and Education in the Computer
Sciences Department</a> (University of Wisconsin)

<DT><DD><LI><a href="http://peaplant.biology.yale.edu:8001/ alchemy.html">AlChemy</a> a simulator for
investigating the origin of distinct organizational grades in the history of life

<DT><DD><LI><a href="http://www.cwi.nl/cwi/departments/AAl.html">Algorithms and Complexity</a>

<DT><DD><LI><a href="http://www.cogs.susx.ac.uk/users/ezequiel/alife-page/ complexity.htm]">Alife
Bibliography on Complexity, Emergence, ..</a>

<DT><DD><LI><a href="http://www.erg.adbn.ac.uk/projects/alife/html.dir/ current-issue.html">ALife Digest</a>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ zooland/">ALife Games
Download</A> in Europe (<I>Germany</I>)

<DT><DD><LI><a href= "http:/ /www.cs.brandeis.edu/~zippy/alife-library.html">ALife Library</a>

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife /archives.html">Alife papers archive</A> at Alife Online
(SFI)

<DT><DD><LI><A HREF="http:/ /www.cs.cmu.edu:8001/afs/cs/project/ai-repository/
ai/areas/alife/systems/0.html">ALife Repository</A>

<DT><DD><LI><A HREF="http://www.io.com/~spofford/index.html">Alife screen saver</A> Primordial Life

<DT><DD><LI><A HREF=http://alife.santafe.edu/alife/topics/simulators/dret/ dret.html>ALife Simulators and
Their Applications</A> by Howard Gutowitz

<DT><DD><LI><a href="http://www.fwi.uva.nl/research/neuro/">Amsterdam (UA) Robotics and
Neurocomputing</A>

<DT><DD><LI><a href="http://cs-www.uchicago.edu:80/~firby/aap/">The Animate Agent Project</a>

<DT><DD><LI><A HREF=http://morganmedia.com/m2/shock.html>Animated fish-tank</ A> for Netscape 2.0

<DT><DD><LI><a href="http://www.mindspring.com/~zsol/nnintro.html">An Introduction To Neural
Networks</a>

<DT><DD><LI><A HREF="http://acll.physics.gatech.edu/acthome.html">Applied Chaos Laboratory at Georgia
Tech</A>

<DT><DD><LI><a href="http://pm.znet.com/apchaos/">Applied Chaos, LLC.</a>

<DT><DD><LI><a href="http://www.comp.lancs.ac.uk/computing/research/aai-aied/ ">Applied Artificial
Intelligence/Al in Education</a>

<DT><DD><LI><A HREF=ftp:/ /ftp.cs.cmu.edu/user/ai/pubs/news/comp.ai.alife/ >Archive of comp.ai.alife</A>
(<I>Pennsylvania</I>)

<DT><DD><LI><A HREF="http://www.krl.caltech.edu/~brown/news/ai-games-html/ ">Archive of
comp.ai.games</A> by thread, by date, by author, or by subject

<DT><DD><LI><a href="http:/ /www-cs.stanford.edu/profile/ai.html">Artificial Intelligence</a>

<DT><DD><LI><a href="http://www-ilg.cs.uiuc.edu/ai.html">Artificial Intelligence (AI) Group</a>

<DT><DD><LI><a href="http://www.cc.gatech.edu/cogsci/ai.html">Artificial Intelligence</a> (Georgia Insitute of
Technology)

<DT><DD><LI><a href="http://www.cs.washington.edu/research/projects/ai/www/ ai.html">Artificial
Intelligence</a> (University of Washington)

<DT><DD><LI><a href="http://cswww.essex.ac.uk/Al/Welcome.html">Artificial Intelligence</a> (Essex)

<DT><DD><LI><a href="http://www.ai.sri.com:80/aic/">Artificial Intelligence Center</a> SRI International's
Artificial Intelligence Center (AIC)

<DT><DD><LI><A HREF="http://mosaic.echonyc.com/~steven/ ArtificialLife.html">Artificial Life: The Quest for a
New Creation</A> by Stephen Levy

<DT><DD><LI><A HREF="http:/ /reality.sgi.com/employees/craig/ alife.html">Artificial Life</A> (Craig
Reynolds)
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<DT><DD><LI><a href="http://www.cs.iastate.edu/~honavar/ alife.isu.htm!l">Artificial Life Group</a> (Iowa State
University)

<DT><DD><LI><A HREF="http://www.u-aizu.ac.jp/~nehaniv/ALGA.html">Artificial Life Group</A> at the
University of Aizu, Japan

<DT><DD><LI><A HREF="http://life.anu.edu.au/" >Australian National University Bioinformatics</A>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ avida/">Avida</A>

<DT><DD><LI><A HREF="http://nathan.gmd.de/projects/alf/alf.html">Artificial Life approaches with Mobile
Fischertechnik Robots</A>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife /
packages/aquarium/">Aquarium</A>

<DT><DD><LI><a href="ftp://cognet.ucla.edu/pub/alife/papers/ alife.bib.gz">Artificial-life bibliography</a>
(huge)

<DT><DD><LI><a href="http://www.cogs.susx.ac.uk/users/ezequiel/alife-page/ alife.html">A Semi-annotated
Artificial Life Bibliography</a>

<DT><DD><LI><A HREF="http://kant.irmkant.rm.cnr.it/u/gral/luigi/ lupa_algames.html">Artificial Life Games
Homepage</A> '

<DT><DD><LI><a href="http://www.krl.caltech.edu/~brown/alife /AL-groups.html">Artificial Life Groups</a>

<DT><DD><LI><a href="http://www-mitpress.mit.edu/jrnls-catalog/ artificial. html">Artificial Life Journal</a>

<DT><DD><LI><a href="http://www.dnai.com/waite/books.new/Artificial_Life_Lab/ html/allcov.htm]">Artificial
Life Lab</a>a commercial package (Waite Group)

<DT><DD><LI><a href="http://www.krl.caltech.edu/~brown/alife/news/ ">Artificial Life Related Newsgroups
Archive</a>

<DT><DD><LI><A HREF="http://www.fusebox.com/cb/alife.htm]">Artificial Life Page</A>

<DT><DD><LI><A HREF="http://alife.santafe.edu/">Artificial Life Online</A>

<DT><DD><LI><A HREF="http:/ /www.wi.leidenuniv.nl/home/mvdweg/ alife.html">Artifical Life Homepages</A>

<DT><DD><LI><A HREF=http://kant/alife.html>Artificial Life On WWW</A> Italy

<DT><DD><LI><a href="http://www.cs.brandeis.edu/~zippy/alife.htm]">Artificial Life resources</a> (by Patrick
Tufts)

<DT><DD><LI><a href="http://www.krl.caltech.edu/~brown/alife/">Artificial Life resources</a> (by Titus Brown)

<DT><DD><LI><a href="http://www.yahoo.com/Science/Artificial_Life/ ">Artificial Life resources</a> (Yahoo)

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife /software/">Artificial Life Software</A> (Santa Fe
Institute)

<DT><DD><LI><A HREF="http://www.cs.cmu.edu:8001/afs/cs/project/ai-repository/
ai/areas/alife/systems/0.html">Artificial Life Software</A> at CMU

<DT><DD><LI><a href="http://www.yahoo.com/Science/Artificial_Life/ Online_Examples/">Online ALife
Examples</a> (Yahoo)

<DT><DD><LI><a href="http://www.rwcp.or.jp/people/yk/AL-index.html">Artificial Life and Complex Systems
Catalogue</a> (by Y. Kanada)

<DT><DD><LI><a href="http://www-uk.hpl.hp.com/people/jlb/ Aristotle.html">Artificial Life at HPLB</a>

<DT><DD><LI><a href="http://mugwump.ucsd.edu/bkeeley/work-stuff/ Alife_Bib.html">Philosophy of Artificial
Life Bibliography</a>

<DT><DD><LI><a href="http://alife.santafe.edu/alife/topics/simulators/dret/ dret.html">Artificial-Life Simulators
and Their Applications</a>

<DT><DD><LI><A HREF="http://www.wpi.edu/~dkoelle/alife.html">Dave's A-Life Pages</A>

<DT><DD><LI><a href="http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/
areas/alife/systems/0.html">Artificial Life software packages</a>

<DT><DD><LI><A HREF="http://anonym.com/getalife.html">Artificial Living Room</ A> a place to discuss
evolutionary theory

<DT><DD><LI><a href="http://www.spie.org/web/oer/september/ neural_net.html">Artificial neural networks: a
developing science</a>

<DT><DD><LI><A href="http://www.neci.nj.nec.com/homepages/ giles.html">Artificial Neural Network
Research</A> at NEC Research Institute, Princeton, NJ

<DT><DD><LI><A HREF="http://wwwl.daimi.aau.dk/~hhl/ap.html">Artificial Painter</A> a combination of
Genetic Algorithms and Neural Networks

<DT><DD><LI><A HREF="http://www.batnet.com/quist/fha/cr/ index.html">Artificial pets with real brains</A>
Nick Turner's collection

<DT><DD><LI><A href= "http://yaksi.eco.saitama-u.ac.jp/~kawagoe/a-soc/a-soc.html">Artificial Society
Group</A> in Japan
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<DT><DD><LI><a href="http://www.auai.org/">Association for Uncertainty in Artificial Intelligence</a>

<DT><DD><LI><a HREF="http://www.physics.auburn.edu/dynamics.html">Auburn NonLinear Dynamics</a>

<DT><DD><LI><A HREF="http://chaos.ph.utexas.edu:80/home.html">Austin</A> Center for Nonlinear Dynamics

<DT><DD><LI><A HREF="http://life.anu.edu.au/" >Australian National University Bioinformatics</A>

<DT><DD><LI><a href="http://www.ai.univie.ac.at/oefai/nn/ nngroup.html">Austrian Research Institute for
Artificial Intelligence:Neural Net Group</a> (Vienna)

<DT><DD><LI><a href="http://www.automatrix.com/campc">Automatrix CA Hardware (CAM-PC)</a>

<DT><DD><LI><A HREF="http://www.cs.buffalo.edu/~jweber/ autoagent.html">Autonomous Agents</A>
(Buffalo)

<DT><DD><LI><A HREF="http://agents.www.media.mit.edu/groups/agents/">The Autonomous Agents

- Group</a> (MIT)

<DT><DD><LI><A HREF="http://yuggoth.ces.cwru.edu/">Autonomous Agents Research</a> (Case Western
Reserve University)

| <DT><DD><LI><A HREF="file://alpha.ces.cwru.edu/pub/agents/home/ html">Autonomous Agems Research
Group</A> (homepage at CWRU)

<DT><DD><LI><a href="http://www.fwi.uva.nl/research/neuro/projects/ ">Autonomous Systems Group</a>
Robotics and Neurocomputing

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ avida/">Avida</A>

<DT><DD><LI><A HREF="http:/ /www.krl.caltech.edu/avida/Avida.html">The Avida Artificial Life group</A>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="B">B</A></H1>

</DL>

<OL>

<DT><DD><LI><A HREF="http://ai.iit.nrc.ca/baldwin/cfp.html">Baldwin Effect</A>

<DT><DD><LI><A - HREF="http:/ /ai.iit.nrc.ca/baldwin/bibliography.html">Baldwin Effect Bibliography</A>

<DT><DD><LI><A HREF="http://ic-www.arc.nasa.gov/ic/projects/bayes-group/ index.html">Bayesian
Model-Based Learning Group</A> at NASA

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife/software/ bhrevol.html">Behavioral Evolution Simulations
and Tutorials</A>

<DT><DD><LI><A HREF="http://glimpse.cs.arizona.edu:1994/bib/Neural/ ">Bibliographies on Neural
Networks</A> (Arizona)

<DT><DD><LI><A href= "ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife /ak-dewdney/">Biester</A>

<DT><DD><LI><a href="http://muse.bio.cornell.edu/">Biodiversity and Biological Collections</a> (Cornell)

<DT><DD><LI><A href="http:/ /web.psych.ualberta.ca/~mike/ mylab.html">Biological Computation Project</A> at
University of Alberta, Canada

<DT><DD><LI><A HREF="http://chuchi.df.uba.ar/welcome.html">Biological</A> time-series web page from
Argentina

<DT><DD><LI><A href=
“ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife /ak-dewdney/">Biomorphs</A>

<DT><DD><LI><a href="ftp://life.anu.edu.au/pub/complex_systems/ alife">Biomorphs</a> (2)

<DT><DD><LI><A HREF="http://www.cs.brandeis.edu/~zippy/alife-library.html">The Alife library</A>

<DT><DD><LI><A HREF="ftp://alife.santafe.edu/pub/BIBLIO/">BIBLIO</A>The bibliographic collection at
Alife Online

<DT><DD><LI><A HREF="http://www-personal.engin.umich.edu/~streak/bib/">A bibliography of readings on
complex adaptive systems</A>

- <DT><DD><LI><A HREF="http://www.fmb.mmu.ac.uk/~bruce/combib">Bibliography of Measures of

d Complexity</A>

<DT><DD><LI><A HREF="http:/ /alife.santafe.edu/~liekens/ biotopia.html">Biotopia</A>

<DT><DD><LI><A HREF="http:/ /reality.sgi.com/employees/craig/ boids.html">Boids</A> by Craig Reynolds

» <DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/boids/">Boids</A> for Windows

<DT><DD><LI><A HREF="http://hopeless.mess.cs.cmu.edu:8001/bomb/ index.html">Bomb</A> automatic
interactive visual simulation based on cellular automata and fractals

<DT><DD><LI><A HREF="http://math.bu.edu/">Boston</A> University Mathematics Department and Dynamical

Systems Group

L
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<DT><DD><LI><A HREF="http://robotics.stanford.edu/groups/bots/home.html">Bots Research Group</a>
(Stanford University)

<DT><DD><LI><A HREF="http://synapse.cs.byu.edu/home.html">Brigham Young University (BYU) Neural
Networks and Machine Learning Lab</A>

<DT><DD><LI><A HREF="http://www.ucl.ac.uk/~ucesjph/resources/ uk.html">British</A> Nonlinear Sites

<DT><DD><li><a href="http://www.ai.mit.edu/people/brooks/brooks.html">Rodney A. Brooks' Homepage</a>

<DT><DD><LI><a href="http://www.cns.brown.edu/ibns/">Brown University: Institute for Brain and Neural
Systems </a>

<DT><DD><LI><A HREF="http://chuchi.df.uba.ar/welcome.html">Buenos Aires (Univ. of BA) Chuchi
Server:Non-linear time series analysis </A>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ packages/bugs/">Bugs</A>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/bugworld/">Bugworld</A>

<DT><DD><LI><a href="ftp://life.anu.edu.au/pub/complex_systems/ alife">Bugworld</a> (2)

<DT><DD><LI><A HREF="http://prairienet.org/business/ptech/ chaos.html">Business</A> and Chaos

<DT><DD><LI><a href="http://synapse.cs.byu.edu/home.htm!">BYU Neural Networks and Machine Learning

Laboratory</a>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page....</A></I>

</DL>

<DL>

<HR><H1><A NAME="C">C</A></HI1>

</DL>

<OL>

<DT><DD><LI><A HREF="http:/ /isl.cps.msu.edu/GA/software/lil-gp">C language Genetic Programming
System</A>

<DT><DD><LI><A HREF="http://poum.info.unicaen.fr/scripts/ListRep?arva">C++ Multi-agent simulator</a> for
Unix System by Renaud Cazoulat (France)

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ rudy-rucker/">Calife</A> a
1D CA simulator by Rudy Rucker

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife/software/ calife.html">Calife</a>a 2D CA simulator by
Rudy Rucker

<DT><DD><LI><a href="http://noether.ucsc.edu/groups/nonlinear/ research.html">California (UC Santa Cruz):
Nonlinear Dynamics </a>

<DT><DD><LI><A HREF="http://inls.ucsd.edu/">California: UC at San Diego, the Institute for Nonlinear
Science</A>

<DT><DD><LI><A HREF="http://neuroscience.ucdavis.edu/">California (UC at Davis) Center for
Neuroscience</A>

<DT><DD><LI><A HREF="http://carver.pcmp.caltech.edu/">Caltech: Physics of Computation, Computation and
Neural Systems Program</A>

<DT><DD><LI><A HREF="http://www.klab.caltech.edu/">Caltech: The Koch Lab</A>

<DT><DD><LI><A HREF="http://www.cs.jhu.edu/~callahan/ lifepage.html">Callahan's Life page</A>

<DT><DD><LI><A HREF="http://www.im.lcs.mit.edu/broch/">CAM8</A> (MIT)

<DT><DD><LI><A HREF="http://www.cs.cmu.edu:8001/afs/cs/project/cnbc/ CNBC.html">Carnegie-Mellon
University: The Center for the Neural Basis of Cognition</A>

<DT><DD><LI><A HREF="http://www.nbi.dk/CATS/Welcome.html">CATS</A> Chaos and Turbulence Studies
Center at NBI

<DT><DD><LI><a href="http://penguin.phy.bnl.gov/www/xtoys/xtoys.html">Michael Creutz's CA simulators for
Xwindows</a>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ packages/cat/">C.A.T.</A>
A Cellular Automaton Tool

<DT><DD><LI><A HREF="http:/ /alife.santafe.edu/alife/topics/ca/caweb">CA Web </ A>

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife/software/ cellsim.html">Cellsim</a> is a cellular
automaton simulator by David Hiebeler and Chris Langton

<DT><DD><LI><A HREF="http://rucs2.sunlab.cs.runet.edu/~dana/ca/ca.html" >Cellular Automata</A>

<DT><DD><LI><a href="http:/ /www.csc.fi/math_topics/Movies/CA.html">Cellular Automata</a> by Juha Haataja

<DT><DD><LI><a href="ftp://think.com/mail">Cellular Automata Mailing List Archive</a>
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<DT><DD><LI><a href="http://www.cs.runet.edu/~dana/ca/cellular.html">The Cellular Automata Simulation
System</a>

<DT><DD><LI><a href="http://bitmed.ucsd.edu/text-repository/ carf.html">Cellular Automata and Random
Fields</a>

<DT><DD><LI><a href="http://www.ima.umn.edu/bibtex/ca.bib">Cellular Automata Bibliography Database</a>

<DT><DD><LI><a href="http:/ /www.ce.unipr.it/pardis/ CNN/cnn.html">Cellular Neural Networks (CNN)</a>

<DT><DD><LI><A HREF="http://andante.iss.uw.edu.pl/viso/viso.html">Center for Complex Systems</A> at the
University of Warsaw

<DT><DD><LI><A HREF="http://peaplant.biology.yale.edu:8001/">Center for Computational Ecology</A> at the
Yale Institute for Biospheric Studies

<DT><DD><LI><A HREF="http://chaos.ph.utexas.edu/">Center for Nonlinear Dynamics</A> University of Texas
at Austin

<DT><DD><LI><a href="http://ciips.ee.uwa.edu.au/">Centre for Intelligent Information Processing Systems</a>

<DT><DD><LI><A href="http://physig.ph.kcl.ac.uk/cnn/">Centre for Neural Networks</A> at King's College,
England

<DT><DD><LI><a href= "http://www.brunel.ac.uk:8080/depts/Al/sophia/al-vonca.htm">The Central Problem of
Self-Reproduction</a>

<DT><DD><LI><A HREF="http://wwwl.cern.ch/NeuralNets/nnwInHep.html">CERN: Neural Networks in High
Energy Physics Home Page</A>

<DT><DD><LI><a href="http://www.cevis.uni-bremen.de:80/external/cellular/ ">CeVis CA Page </a>

<DT><DD><LI><a href="http://www.uni-mainz.de/FB/Physik/Chaos/ services.html">chaos bibliography</a>-
includes preprints from the University of Mainz

<DT><DD><LI><a href="http://www-chaos.umd.edu/">Chaos</a> The Chaos Group at the University of Maryland
at College Park

<DT><DD><LI><a HREF="http://www.nonlin.tu-muenchen.de/chaos/chaos_e.html">The Chaosgruppe</A>
(Munchen)

<DT><DD><LI><a href="http://www.prairienet.org/business/ptech/full/ index.html">The Chaos Network</a>

<DT><DD><LI><a href="http://xxx.lanl.gov/archive/chao-dyn/">Chaotic Dynamics</ a>Chaos e-print archive at
Los Alamos

<DT><DD><LI><A href="http://www.redweb.com/chess/">Chess Space</A>

<DT><DD><LI><a href="http://www.ccsr.uiuc.edu/People/gmk/Papers/
ChuaSndRef.html">ChuaSoundMusic</a> (Music made from a strange attractor)

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife/topics/simulators/dret/ nodel.html">Classifier
Systems</A>

<DT><DD><LI><A HREF="http://foner.www.media.mit.edu/people/foner/">Clustering/ Information Sharing in
an Ecology of Agents</a> (MIT)

<DT><DD><LI><A HREF="http://www.ai.univie.ac.at/oefai/nn/ cognition.html">Cognitive Modeling with Neural
Networks</A>

<DT><DD><LI><A href="http://matia.stanford.edu/cogsci/">Cognitive and Psychological Sciences</A> (Stanford)

<DT><DD><LI><A href="http://tcw2.ppsw.rug.nl/">Cognitive Science and Engineering</A> (University of
Groningen, Netherlands)

<DT><DD><LI><A href="http://www.cog.brown.edu/">Cognitive and Linguistic Sciences</A>(Brown University)

<DT><DD><LI><A href="http://www.cogsci.ed.ac.uk/ccs/home.html">Cognitive Science</A> (University of
Edinburgh)

<DT><DD><LI><A HREF="http://www.mit.edu:8001 /afs/athena.mit.edu/user/a/y/
ayala/www/home.html">Collaborative Genetic Design</A> at MIT

<DT><DD><LI><A HREF="http://www.harrison.co.nz/alife.htm">Colony of Grebles, Gene Generator, Germ,
Parallel</A>

<DT><DD><LI><A HREF="http:/ /vveirs.cc.colorado.edu/">Colorado College Nonlinear Physics</A>

<DT><DD><LI><A HREF="http://www-comp.mpce.mq.edu.au/~tirthank/ combest.html">Combinding
Estimators</A> (Generalisers)

<DT><DD><LI><A HREF="http://www.gamesdomain.co.uk/cgi-bin/
wwwwais?’keywords=Artificial+Life">Commercial ALife Games</A> in Europe

<DT><DD><LI><A HREF="http://www.krl.caltech.edu/~brown/alife/">comp.ai.alife FAQ</A>

<DT><DD><LI><A HREF="news:comp.ai.alife">comp.ai.alife</A> (Usenet group for the discussion of artificial life)

<DT><DD><LI><a href="http://life.anu.edu.au/ci/ci.html">Complexity International</a>

<DT><DD><LI><a href="http://www.csu.edu.au/ci/ci.htm]">COMPLEXITY INTERNATIONAL ISSN
1320-0682</a>
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<DT><DD><LI><a href="http://www.seas.upenn.edu/~ale/cplxsys.html">Complex Adaptive Systems</a>
(Overview)

<DT><DD><LI><A HREF="http:/ /life.anu.edu.au:80/complex_systems/ complex.html">Complex Systems</A>
Australia (ANU)

<DT><DD><LI><a HREF="ftp://life.anu.edu.au/pub/complex_systems">Complex Systems ftp directory from
ANU</A>

<DT><DD><LI><A HREF="http://bambi.ccs.fau.edu/ccs.html” >Complex Systems</A> Boca Raton

<DT><DD><LI><A HREF="http://www.ccsr.uiuc.edu/" >Complex Systems</A> at Beckman Institute

<DT><DD><LI><a href="http://pscs.physics.Isa.umich.edu/pscs.html">Complex Systems</a> University of
Michigan

<DT><DD><LI><a href="http://www.csu.edu.au/complex/compsys.html">Complex Systems Information
Network</a>

<DT><DD><LI><A href= "http:/ /alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.html">comp.theory.cell-automata
FAQ</A>

<DT><DD><LI><A href= "news:comp.theory.cell-automata">comp.theory.cell-automata</A> (Usenet newsgroup)

<DT><DD><LI><a href="http://www.cns.caltech.edu/">Computation & Neural Systems Program</a> (CNS)

<DT><DD><LI><A HREF="http://bcn.boulder.co.us/environment/Global/ EnvTopics.html">Computational
Biology</A> atat SDSC

<DT><DD><LI><A HREF="http://golgi.harvard.edu/biopages/">Computational Biology</A> at Harvard

<DT><DD><LI><A HREF="http://www.pg.gda.pl/biology.html">Computational Biology</A> at Johns Hopkins

<DT><DD><LI><A HREF="http://www.cse.ucsc.edu/research/compbio/">Computational Biology</A> at UC Santa
Cruz

<DT><DD><LI><A href="http://beowulf.uwaterloo.ca/">Computational Epistemology Lab</A> (University of
Waterloo)

<DT><DD><LI><a href="http://www.cirl.uoregon.edu/">Computational Intelligence Research Laboratory</a>
(University of Oregon)

<DT><DD><LI><A HREF="http://coli.uni-sb.de/info/ cl_in_sb.index.htm]">Computational Linguistics</A> at
Saarbrucken

<DT><DD><LI><A href="http://www.santafe.edu/projects/ CompMech/">Computational Mechanics Group at
Santa Fe</A>

<DT><DD><LI><a href="http://knicks.ee.ufl.edu/">Computational Neuroengineering Lab</a>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
gene-spafford/">Computer-Viruses: A Form of Artificial Life?</A>

<DT><DD><LI><A HREF="http://monet.physik.unibas.ch:80/thomas/ index.html">Condensed</A> matter
systems studied at University of Basel (Switzerland)

<DT><DD><LI><A href="http:/ /www.cs.cmu.edu/Web/Groups/CNBC/other/
connectionists.html">Connectionists</A>

<DT><DD><LI><a href="http://online.anu.edu.au/ITA/ACAT/contours/ contours.html">Contours of the
Mind</a> exhibition on Fractals, Feedback and Chaos

<DT><DD><LI><A HREF="http://cdps.cs.unh.edu/">Cooperative Distributed Problem Solving</a> (University of
New Hampshire)

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/copycat/">Copycat</A> (ftp)

<DT><DD><LI><A HREF="ftp://soda.berkeley.edu/pub/corewar">Corewar</A> (Berkeley,ftp)

<DT><DD><LI><A href= "ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ak-dewdney/">Core Wars</A>
(ftp)

<DT><DD><LI><A HREF="http://www.tc.cornell.edu/Research/Articles/MPS/DMS/
Durrett/durrett.models.html">Cornell Theory Center Movies</A>

<DT><DD><LI><A HREF="http://www.batnet.com/quist/fha/cr/">Critters</A>

<DT><DD><LI><A HREF="http://www.santafe.edu/~jpc/">James Crutchfield's Homepage</A>

<DT><DD><LI><A HREF="ftp:/ /alife.santafe.edu/pub/CURRICULA/">CURRICULA</A> Syllabus suggestions for
courses on Artificial Life

<DT><DD><LI><A HREF="http://pespmcl.vub.ac.be/journals.html" >Cybernetics and Systems Journals</A>

<DT><DD><LI><A HREF="http://pespmcl.vub.ac.be/CYBSYSTH.html" >Cybernetics and Systems Theory</A>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>
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<H1><A NAME="D">D</A></H1>

</DL>

<OL>

<DT><DD><LI><A HREF="http:/ /alife.santafe.edu/alife/software/ ddlab.html">Discrete Dynamics Lab</a>

<DT><DD><LI><A HREF="http://euler.mcs.utulsa.edu/~sandip/ sandip.html">Distributed Artificial
Intelligence</a> (Tulsa University)

<DT><DD><LI><a href="http://dis.cs.umass.edu/">Distributed Artificial Intelligence Laboratory</a> (UMass)

<DT><DD><LI><A HREF="http://ai.eecs.umich.edu/diag/homepage.html">Distributed Intelligent Agents
Group</a> (University of Michigan)

<DT><DD><LI><A HREF="http://www.iesd.auc.dk/general/DS/index.html" >Distributed Systems</A>

<DT><DD><LI><a href="http://www.wmin.ac.uk/~ccdva/">Dynamical Symmetries</a>

<DT><DD><LI><A HREF="ftp://parcftp.xerox.com/pub/dynamics/ dynamics.html">Dynamics of
Computation</a> (Xerox Palo Alto Research Center), ftp

<DT><DD><LI><a href="ftp://parcftp.xerox.com/pub/dynamics/ multiagent.html">Dynamics of Multiagent
systems</a>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="E">E</A></H1>

</DL>

<OL>

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife/software/echo.html">Echo</ a> is an ecological
simulation system by Terry Jones and John Holland

<DT><DD><LI><a href="http://www.cs.runet.edu/~dana/ca/cellular.html">Eckart's Cellular Automata Simulator
</a>

<DT><DD><li><a href="ftp:/ /alife.santafe.edu/pub/USER-AREA/EC/">EvolutioNary COmputation REpository
network (ECORE)</A> at Santa Fe Institute

<DT><DD><li><a href="ftp://ftp.Germany.EU.net/pub/research/softcomp/EC/ ">ECORE</A> at EUnet
Deutschland GmbH

<DT><DD><li><a href="ftp:/ /ftp.dcs.warwick.ac.uk/pub/mirrors/EC/">ECORE</A> at The University of Warwick,
UK

<DT><DD><li><a href="ftp:/ /ftp.krl.caltech.edu/pub/EC/">ECORE</A> at The California Institute of Technology

<DT><DD><li><a href="ftp:/ /ftp.cs.wayne.edu/pub/EC/">ECORE</A> at Wayne State University, Detroit

<DT><DD><li><a href="ftp://ftp.cps.msu.edu/pub/EC/">ECORE</A> at The Michigan State University

<DT><DD><li><A HREF="ftp:/ /ftp.uct.ac.za/pub/mirrors/EC/">ECORE</A> at The University of Capetown,
South Africa

<DT><DD><LI><A HREF="http://www.cns.ed.ac.uk/">Edinburgh: University of Edinburgh Centre for Neural
Systems</A>

<DT><DD><LI><A HREF="http://kant.irmkant.rm.cnr.it/u/gral/luigi/ lupa_cnrgames.html">Educational &
Therapeutic ALife Games</A> online review (Italy-Denmark)

<DT><DD><LI><A HREF="http:/ /research.germany.eu.net:8080/encore/">ENCORE</A> The Electronic
Appendix to "The Hitchhiker's Guide to Evolutionary Computation”

<DT><DD><LI><a href="ftp:/ /alife.santafe.edu/pub/USER-AREA/EC/">ENCORE</a> (ftp)

<DT><DD><LI><a href="ftp:/ /ftp.cs.wayne.edu/pub/EC/Welcome.html">SHTML version of ENCORE</a> (ftp)

<DT><DD><LI><A href="ftp://ftp.dcs.warwick.ac.uk/pub/mirrors/EC/ Welcome.html">SENCORE Evolutionary
Computation Archive</a> (2)

<DT><DD><LI><A HREF="http://nsgsun.aae.uiuc.edu/">Engineering </A> Nonlinear Systems Group at UTUC

<DT><DD><LI><a href="ftp:/ /ftp.essex.ac.uk/pub/robots">Essex Robotics FTP Directory</a>

<DT><DD><LI><A HREF="http://www.cc.duth.gr/~mboudour/nonlin.html">European</ A> nonlinear archive
and pointer to nonlinear and complex sites :

<DT><DD><LI><a href="http://www.santafe.edu/projects/evca/">Evolving Cellular Automata</a>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ karl-sims/">Evolving
Creatures</A> (IMB)

<DT><DD><LI><a href="HTTP://www.sepa.tudelft.nl/~afd_ba/ evolu.html">Evolution, Complexity and
Philosophy</a>

<DT><DD><LI><A HREF="http://lancet.mit.edu/ga/OtherSites.htm]" >Evolutionary Algorithm Sites</A>
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<DT><DD><LI><A HREF="http://www.dai.ed.ac.uk/groups/evalg/">Evolutionary Algorithms Group</A> at The
University of Edinburgh, UK

<DT><DD><LI><A HREF="http://www.cogs.susx.ac.uk/lab/adapt/ index.htm!">Evolutionary and Adaptive Systems
at COGS</A>

<DT><DD><LI><A HREF="http:/ /www.cs.wisc.edu/~smucker/EC.htm]" >Evolutionary Computation and Artificial
Life</A>

<DT><DD><LI><a href="http://www-mitpress.mit.edu/jrnls-catalog/ evolution.htm!">Evolutionary Computation
Journal</a>

<DT><DD><LI><a href="http://zen.btc.uwe.ac.uk/evol/index.html">Evolutionary Computing Group at UWE,
Bristol</a>

<DT><DD><LI><a href="http://pespmcl.vub.ac.be/EVOLSYS.html">Evolutionary Systems</a> an exploratory
paper

<DT><DD><LI><a href="http://www.santafe.edu/projects/evca/ index.html">Evolving Cellular Automata (EVCA)
Group</a> Santa Fe Institute

<DT><DD><LI><A HREF="http://www.batnet.com/quist/fha/">Evolving Software (Evolutionary programming),
Critters, CyberChromes</A>

<DT><DD><LI><A HREF="http://www.lib.rmit.edu.au/fractals/ exploring.html!">Exploring Chaos and
Fractals</A>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="F">F</A></HI1>

</DL>

<OL>

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.htmI">FAQ: Cellular
Automata</A> (Santa Fe)

<DT><DD><LI><A HREF="http://www.cis.chio-state.edu/hypertext/faq/usenet/ fractal-faq/faq.html">FAQ;
Fractals</A> (Ohio State)

<DT><DD><LI><A HREF="http://www.salford.ac.uk/docs/depts/eee/ gp2faq.html">FAQ: Genetic
Programming</A> (University of Salford, UK)

<DT><DD><LI><A href= "http:/ /wwwhost.cc.utexas.edu/cc/staff/mccoy/gp/FAQ-toc.html">FAQ: Genetic
Programming</A> (University of Texas)

<DT><DD><LI><A HREF="http://www.salford.ac.uk/docs/depts/eee/gpfaq.html">FAQ: Genetic Programming in
C++</A> (University of Salford, UK)

<DT><DD><LI><a href="http://www.eeb.ele.tue.nl/neural/neural_FAQ.html">FAQ: Neural Networks</a>
Findhoven, The Netherlands)

<DT><DD><LI><A href= "http://wwwipd.ira.uka.de/~prechelt/FAQ/neural-net-faq.html">FAQ; Neural
Networks</a> (2)

<DT><DD><LI><a href="http://www.cs.indiana.edu/robotics/FAQ/copy.htm!">FAQ: Robotics</a> (Indiana)

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ docs/afish.html">Fishes of
the Silicon Sea</A>

<DT><DD><LI><A HREF="http://bambi.ccs.fau.edu/ccs.html">Florida Atlantic University: The Center for Complex
Systems</A>

<DT><DD><LI><A HREF="http://knicks.ee.ufl.edu/">Florida (UF at Gainesville) Computational Neuroengineering
Lab (CNEL)</A>

<DT><DD><li><a href="http://www.cs.unm.edu/Engr_Schl/CS_Dept/subpages/ teachers/forrest.html">Stephanie
Forrest's Homepage</a>

<DT><DD><LI><a href="http://www.cup.cam.ac.uk/onlinepubs/Fractals/ fracts1.html">Fractal Concepts in Surface
Growth</a>

<DT><DD><LI><a href="http://spanky.triumf.ca/">Fractal Database</a>

<DT><DD><LI><a href="http://www.vis.colostate.edu/~user1209/fractals/ index.html">Fractal Explorer</a>

<DT><DD><LI><a href="http://www.acm.uiuc.edu:80/rml/Gifs/Fractal/">Fractal Gifs</a>

<DT><DD><LI><A HREF="http://www.batnet.com/quist/fha/fha.htm!" >Fractal Heart Art</A>

<DT><DD><LI><a href="http://inls.ucsd.edu/y/ASl/">Fractal Image Encoding and Analysis a NATO Advanced
Study Institute</a>

<DT><DD><LI><a href="http://www.ncsa.uiuc.edu/Edu/Fractal/ Fractal_Home.html">The Fractal
Microscope</a>
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<DT><DD><LI><a href="http://www.cnam.fr/fractals.html">Fractal pictures & animations</a>

<DT><DD><LI><a href="http://www.ccs.fau.edu/~tomh/fractals/ fractals.html">Fractals</a>

<DT><DD><LI><a href="http://www-pic.ing.uniromal.it/cfpl/cfpl.html">Fractals and chaos in Chemical
Engineering</a>

<DT><DD><LI><a href="http://life.csu.edu.au/fractop/">Fractop V1.0</a> computes dimensions of imported
images

<DT><DD><LI><A HREF="http://alife.santafe.edu/alife/topics/simulators/dret/ dret.html">Fundamental
Algorithms of Artificial Life</A>

<DT><DD><LI><A href="http:/ /www.quadralay.com/www/Fuzzy/Fuzzy.html">Fuzzy Logic Archive</A> (Quadralay
Corporation)

> <DT><DD><LI><A href="ftp://ftp.hiof.no/pub/Fuzzy">Fuzzy Logic Collection</A> at Ostfold Regional College,
Norway (ftp)

<DT><DD><LI><A href= "http://www.cis.ohio-state.edu/hypertext/faq/usenet/fuzzy-logic/partl /faq.html">Fuzzy
Logic FAQ</A>

<DT><DD><LI><A href="ftp://ntia.its.bldrdoc.gov/pub/fuzzy">Fuzzy Logic Repository</A> (ftp)

</0OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL>

<HR><H1><A NAME="G">G</A></H1>

</DL> .

<OL>

<DT><DD><LI><A HREF="http://kal-el.ugr.es/gags.man.html">GAGS</A> a genetic algorithm generator

<DT><DD><LI><a href="http://www.wi.leidenuniv.nl/CS/SEIS/gain.html">GAiN: Genetic Algorithms, Al and
Neural Networks</a>

<DT><DD><LI><A HREF="http://www.anark.com/Galapagos/index.html">Galapagos</A> 3D Alife Game

<DT><DD><LI><a href="ftp://life.anu.edu.au/pub/complex_systems/alife/ life">Game of Life</a> (ftp)

<DT><DD><LI><A href= "http://forum.swarthmore.edu/~jay/learn-game/game-links.html">Games and Al</A>

<DT><DD><LI><A HREF="http://www.cs.vu.nl/~victor/thesis.html">Games & Artificial Intelligence</a> by Victor
Allis (Netherlands)

<DT><DD><LI><a href="http://peaplant.biology.yale.edu:8001/gecko.html">Gecko</ a> individual-based simulator
for modeling ecosystem dynamics (based on John Holland's Echo)

<DT><DD><LI><A HREF="http://www.iea.com:80/~stevem/">Generator</A> GA package for Excel

<DT><DD><LI><A HREF="http://www.germany.eu.net/people/joke.html">Generic Classifier System Exploration
Tool</A>

<DT><DD><LI><A HREF="http://www.scs.carleton.ca/~csgs/resources/ gaal.html">Genetic Algorithms and
Alife</A> (Carleton University)

<DT><DD><LI><A HREF="http://www.aic.nrl.navy.mil:80/galist/" >Genetic Algorithms Archive</A>

<DT><DD><LI><A HREF="ftp://gal4.ge.uiuc.edu/illigal.home.html">Genetic Algorithms Archive</A> (Illinois
Genetic Algorithms Lab)

<DT><DD><LI><a href="ftp://ftp.aic.nrl.navy.mil/pub/galist" >Genetic Algorithm Digest Archives</a> (ftp)

<DT><DD><LI><a href="http://www.cs.gmu.edu/research/gag/">Genetic Algorithms Group (GAG)</a> at George
Mason University

<DT><DD><LI><a href="http://isl.msu.edu/GA/">Genetic Algorithms Research and Applications Group (MSU
GARAGe)</a> at Michigan State University

<DT><DD><LI><A HREF="http://www-personal.engin.umich.edu/~streak/ online.html">Genetic Algorithm
Research Group Online Resources</A> at University of Michigan

<DT><DD><LI><A HREF="http://www.dcs.warwick.ac.uk/~martyn/ga.html">GEnetic Algorithms Research

- Students</A> (GEARS)

. <DT><DD><LI><A href= ftp://129.82.102.183/pub/TechReports/1993/tr-103.ps.Z>Genetic Algorithm
Tutorial</A> to download (Colorado)

<DT><DD><LI><A HREF="http:/ /isl.cps.msu.edu/GA/software/lil-gp/">Free GA in C</A>

= <DT><DD><LI><A HREF="http://uxh.cso.uiuc.edu/~carroll/ga.html">Free GA in Fortran</A> David Carroll,
Illinois

<DT><DD><LI><a href="http://www.ts.umu.se/~top/travel.html">GA Traveling Salesperson Problem solver</a>

<DT><DD><LI><A HREF="telnet://genesis@genesis.cns.caltech.edu">Genesis</A> a neural network simulator for
biological modeling
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<DT><DD><LI><A HREF="http://robocop.modmath.cs.cmu.edu:8001/htbin/ moviegenform">Genetic
Movies</A>
<DT><DD><LI><a href="http://nmt.edu/~jefu/notes/notes.html">Genetic music</a>
<DT><DD><LI><A HREF="http://www.cs.ucl.ac.uk/intelligent_systems/ genetic_programming.html" >Genetic
Programming</A> at UCL
<DT><DD><LI><A HREF="ftp://cs.ucl.ac.uk/genetic/biblio/">Genetic Programming Bibliography</A> (ftp)
<DT><DD><LI><A HREF="http://wwwhost.cc.utexas.edu/cc/staff/mccoy/gp/ gp.html">Genetic
Programming</A> at University of Texas
<DT><DD><LI><A href="ftp:/ /ftp.io.com/pub/genetic-programming/">Genetic Programming Ftp Site</a>
<DT><DD><LI><A HREF="http://www.salford.ac.uk/docs/depts/eee/ genetic.html">Genetic Programming Home
Page</A> (University of Salford, UK) “
<DT><DD><LI><A HREF="http://www.can.nl/SystemsOverview/General/ mathematica.html">Genetic
Programming</A> in Mathematica
<DT><DD><LI><A HREF="ftp://ftp.io.com/pub/genetic-programming/">Genetic Programming</A> mailing list
archives (ftp)
<DT><DD><LI><A HREF="ftp://ftp.cc.utexas.edu/pub/genetic-programming/ ">Genetic Programming
Repository</A> (ftp)
<DT><DD><LI><A HREF="ftp://cs.ucl.ac.uk/genetic">GP FTP directory</A>Genetic Programming resources
<DT><DD><LI><A HREF=http://dcpul.cs.york.ac.uk:6666/mark/top_ga.html>Genetic Programming Tutorial</A>
Online (<I>United Kingdom</I>)
<DT><DD><LI><A HREF=http://kal-el.ugr.es/pitis.html>GeNeura Team</A> with Mbiti Evolution Game
(<I>Spain</I>)
<DT><DD><li><a href="http://www.cs.gmu.edu:80/research/gag/">George Mason University Genetic Algorithms
Group</a>
<DT><DD><LI><a HREF="http://acll.physics.gatech.edu/aclhome.html">Georgia Tech Applied Chaos Laboratory
(ACL)</a>
<DT><DD><LI><A HREF="http://www.nonlin.tu-muenchen.de/chaos/ chaos_e.html">German</A> chaos group
<DT><DD><LI><a href="http://www.dfki.uni-sb.de/">German Research Center for Artificial Intelligence </a>
<DT><DD><LI><A HREF="http://www.cs.vu.nl/~Igonggr/AlifeLinks.html">Gerrie's Artificial Life Sites</A>
<DT><DD><LI><A HREF="http:/ /www.mech.gla.ac.uk/~nactftp/nact.html">Glasgow: Neural Adaptive Control
Technology (NACT)</A>
<DT><DD><LI><a href="http://nathan.gmd.de/">GMD Artificial Intelligence Research Division (FIT.KI)</a>
<DT><DD><LI><A HREF="http://math.wisc.edu/~griffeat/kitchen.html">David Griffeath's Primordial Soup
Kitchen</A> a Cellular Automata hot spot
<DT><DD><LI><A HREF="http:/ /www.santafe.edu:80/~hag/">Howard Gutowitz's Homepage</A>
</OL>
<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>
</DL>
<DL>
<HR><H1><A NAME="H">H</A></H1>
</DL>
<OL>
<DT><DD><LI><A HREF="http://www.cpsc.ucalgary.ca/~hammel/BioSim/ Lsystems">Hammel's L-Systems
site</A>
<DT><DD><LI><A HREF="http://www.harrison.co.nz/alife.htm"><LI>Harrison's Artificial Life Page</A>
<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
docs/highlife/">Highlife</A>
<DT><DD><LI><a href= "http:/ /www.cis.ohio-state.edu/hypertext/faq/usenet/ai-faq/genetic/top.html">The
Hitchhiker's Guide to Evolutionary Computation</a> -
<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ .
packages/hodgepodge/">Hodgepodge machine</A> by Jorg Heitkotter
<DT><DD><LI><A HREF="http://www.trincoll.edu/psyc/ Homeokinetics">Homeokinetics </A>
<DT><DD><LI><A href="http://ai.iit.nrc.ca/HCI_public/ Locator/ world.html">Human-Computer Interaction Lab 4
Locator</A> “
<DT><DD><LI><a href="http://reality.sgi.com/employees/rck/hydra/">Hydra</a> an interactive 2D 3D
Mandelbrot, Julia fractal graphics plotter
<DT><DD><LI><A HREF="http:/ /www.fmb.mmu.ac.uk/~bruce/combib">Hypertext Bibliography of Complexity
Measures</A>

v &
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</OL>
<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>
</DL>
<DL><HR>
<H1><A NAME="T">I</A></H1>
</DL> (
<OL>
<DT><DD><LI><A href="http://www.icenet.it/icenet/neurality/links/ home_uk.html">ICE Neural Nets Hot
List</A>
<DT><DD><LI><a href="http://www.ieee.org:80/nnc/index.html">IEEE Neural Networks Council</a>
» <DT><DD><li><a href="http://gal4.ge.uiuc.edu/illigal. home.html">IliGAL Home Page (Univ. Illinois-Urbana
Genetic Algorithms Lab)</a>
<DT><DD><LI><a href="http://www.uic.edu/~fuks/dds.html">Illinois (UI at Chicago): Discrete Dynamical
Systems</A>
<DT><DD><LI><A HREF="http://www.ccsr.uiuc.edu/">lllinois: UI at Urbana-Champaign, Center for Complex
Systems Research</A>
<DT><DD><LI><A HREF="http://www.beckman.uiuc.edu/">Illinois: UI at Urbana-Champaign, The Beckman
Institute for Advanced Science and Technology</A>
<DT><DD><LI><a href="http://www.industrialstreet.com/chaos/">Images of Chaos</ a>
<DT><DD><LI><a href="http://www.scs.carleton.ca/~csgs/resources/ gaal.html">Index to GA and artificial life
resources</a>
<DT><DD><LI><a href="http://life.csu.edu.au/vl_complex/library.html">Index to Complex Systems resources</a>
(WWW Virtual Library)
<DT><DD><LI><A HREF="http://www.im.lcs.mit.edu/" >Information Mechanics (MIT)</A>
<DT><DD><LI><a href="http:/ /www.idiap.ch/">Institut Dalle Molle d'Intelligence Artificielle Perceptive</a>
<DT><DD><LI><a href="http://inls.ucsd.edu/inls.html">Institute for Nonlinear Science at UCSD</a>
<DT><DD><LI><a href="http://itkwww.kub.nl:2080/itk/itkhome.html">Institute for Language Technology and
Artificial Intelligence</a>
<DT><DD><LI><a href="http://www.idsia.ch/">Istituto Dalle Molle di Studi sull'Intelligenza Artificiale</a>
<DT><DD><LI><A HREF="http://www.eecis.udel.edu/~jchu/ homepage.html">Intelligent agents</a> (University
of Delaware)
<DT><DD><LI><A HREF="http://boom.cs.ucl.ac.uk/staff/skhebbal/ihs/ ">Intelligent Hybrid Systems</A>
<DT><DD><LI><a href="http://galahad.elte.hu/">Institute for Solid State Physics and Chaos Group, Budapest</a>
<DT><DD><LI><A HREF="http://www.cs.umbc.edu/agents/">Intelligent Software Agents</a> (University of
Maryland Baltimore County)
<DT><DD><LI><a href="http://www.uivt.cas.cz/">Institute of Computer Science (ICS) of the Academy of Sciences
of the Czech Republic</a>
<DT><DD><LI><A HREF="http:/ /retriever.cs.umbc.edu:80/agents/" >Intelligent Software Agents Resources</A>
<DT><DD><LI><a href="http://www.elec.qmw.ac.uk/isag/">Intelligent Systems Applications Research Group</a>
<DT><DD><LI><a href="http://dcs2.cs.york.ac.uk:9876/isg/ home.htmI">Intelligent Systems Group</a>
~ <DT><DD><LI><A HREF="http://mixing.sp.cs.cmu.edu:8001/htbin/ mjwgenform">Interactive Genetic Art</A>
<DT><DD><LI><A HREF="http://mixing.sp.cs.cmu.edu:8001 /htbin/ moviegenform">Interactive Genetic
Movies</A>
<DT><DD><LI><A HREF="http://www.cs.bham.ac.uk/~amw/agents/">Interface Agents</ A>
<DT><DD><LI><a href="http://www.iiasa.ac.at/">IIASA</a>International Institute for Applied Systems Analysis
<DT><DD><LI><a href="http://robocop.modmath.cs.cmu.edu:8001/">International Interactive Genetic Art</a>
<DT><DD><LI><A HREF="http://robocop.modmath.cs.cmu.edu:8001/htbin/ mjwgenformII">International
Interactive Genetic Art II Exhibit</A>
- <DT><DD><LI><A HREF="http://www.liasa.ac.at/">International Institute for Applied Systems Analysis</A>

I L.

»n

he <DT><DD><LI><a href="http://sharp.bu.edu/inns/">International Neural Network Society</a>
<DT><DD><LI><a href="http://phil-preprints.l.chiba-u.ac.jp/IPPE/ preprints2.html">International Philosophical
Preprint Exchange</a>
= <DT><DD><LI><A HREF="http://netq.rowland.org/isab/isab.html">International Society for Adaptive
= Behavior</A>

<DT><DD><LI><A HREF="http://www.agh.edu.pl/~dimas95k/">International Workshop on Decentralized
Intelligent and multi-agent systems</A>

<DT><DD><LI><a href="http://www.hsr.no/~onar/Ess/ Back_to_Basics.html">Introduction to Systems Theory and
Complexity</a>
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<DT><DD><LI><A HREF="http://www.cs.wisc.edu/~smucker/ipd-cr/ipd-cr.html">Iterated Prisoner's
Dilemma</A>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<HI1><A NAME="]">J</A></H1>

</DL>

<OL>

<DT><DD><LI><a HREF="http://jnns-www.okabe.rcast.u-tokyo.ac.jp/jnns/ home.html">Japan Neural Network
Society (JNNS)</a>

<DT><DD><LI><A HREF="http://www.phys.titech.ac.jp/~tag/non-linear.html">Japanese</A> Nonlinear Research
sites

<DT><DD><LI><a href="http://www.cs.washington.edu/research/jair/ home.html">Journal of Artificial
Intelligence Research</a>

<DT><DD><LI><A HREF="http:/ /alife.santafe.edu/alife/software/jvn.html">JVN</ a> An implementation of the
John von Neumann Universal Constructor

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="K">K</A></H1>

</DL>

<OL>

<DT><DD><LI><a href="ftp://think.com/users/karl/Welcome.html">Karl Sims' Virtual Creatures</a>

<DT><DD><LI><A HREF="http:/ /wwwi3s.unice.fr/~om/khep-sim.html">Khepera Simulator</A> public domain
C/C++ package for writing a controller for a mobile robot

<DT><DD><LI><A href="http://www.cs.utexas.edu/users/mfkb/ related.html">Knowledge-Base Projects</A>

<DT><DD><LI><a href="http://www_is.cs.utwente.nl:8080/kbs/ kbsgeneralpage.html">KBS (Knowledge Based
Systems) group</a>

<DT><DD><LI><A href="http://www.cs.umbc.edu/kgml/">Knowledge Query and Manipulation Language</A>
(University of Maryland, Baltimore)

<DT><DD><LI><A HREF="http://logic.stanford.edu/knowledge.html">Knowledge Sharing</a> (Stanford
University)

<DT><DD><LI><A href="ftp://cochlea.hut.fi/pub/">Teuvo Kohonen's Self-Organizing Map and Learning Vector
Quantization software</a>

<DT><DD><LI><A HREF="http:/ /www-ncsl.postech.ac.kr/">Korea's</A> Postech Lab in Nonlinear Science

<DT><DD><LI><a href="http://www-cs-faculty.stanford.edu/~koza/">John Koza</a> (Evolutionary Programming)

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page....</A></I>

</DL>

<DL><HR>

<H1><A NAME="L">L</A></H1>

</DL>

<OL>

<DT><DD><LI><A href= "ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ak-dewdney/">L-Systems</A>

<DT><DD><LI><A HREF="http://www.cpsc.ucalgary.ca/~hammel/BioSim/Lsystems/ software.html/">L-System
Software</A>

<DT><DD><LI><A HREF="http://www.santafe.edu/~cgl/">Chris Langton’s Homepage</ A>

<DT><DD><LI><A HREF="http://www-cse.ucsd.edu/users/fil/lee/lee.html">Latent Energy Environments</a> by
Richard Belew and Filippo Menczer

<DT><DD><LI><A href= "http://dis.cs.umass.edu/research/agents-learn.html">Learning in multiagent
systems</A>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ mitchel-resnik/">LEGO,
LOGO, and other creatures</A>

<DT><DD><LI><A HREF="http://www.cs.jhu.edu/~callahan/lifepage.html">Conway's Game of Life page</A>
(HU)

<DT><DD><LI><a href="ftp://life.anu.edu.au/pub/complex_systems/alife/ life">Game of Life </a> (AUS)
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<DT><DD><LI><A HREF="ftp://ftp.cs.jhu.edu/pub/callahan/conways_life/ life16.zip">Life16.zip</A> (DOS)

<DT><DD><LI><A HREF="ftp:/ /redback.cs.uwa.edu.au/Others/AndrewTrevorrow/ lifelab.sea">LifeLab 3.0</A>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ packages/lifesearch/">Life
Search</A>

<DT><DD><LI><A HREF="ftp://life.anu.edu.au/pub/complex_systems/alife/life/ lifep.zip">Life patterns</A> at

. Australian National University's Alife repository maintained by David Green
<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/lifesearch/">Lifesearch<a> (ftp)
" <DT><DD><LI><A HREF="http:/ /shakti.trincoll.edu/~bhorling/ bryansreallife.html">Lindenmayer Systems</A>
<DT><DD><LI><A HREF="http://liberty.uc.wlu.edu/~hblackme/newhome/ exemplary.html">Lindenmayer
ot Systems Tutorial</A>

<DT><DD><LI><A HREF="http://www-dsi.ing.unifi.it/neural /w3-sites.html">List of Neural Networks sites</A>
(Florence, Italy)

<DT><DD><LI><a href="http://www.cs.ut.ee/~helger/complexity/communication/ papers.html">List of papers on
Communication complexity</a>

<DT><DD><LI><A HREF="http://www.fusebox.com/cb/alife.html">Live Artificial Life Page</A>

<DT><DD><LI><A HREF="http://www.csc.liv.ac.uk/users/biocomp/">Liverpool Biocomputation Group</A>

<DT><DD><LI><a href="http://hitchhiker.space.lockheed.com/aic/ README.html">Lockheed Artificial
Intelligence Center</a>

<DT><DD><LI><a href="http://peaplant.biology.yale.edu:8001 /loki.html">Loki</ a> a stochastic program
simulating population genetics

<DT><DD><LI><a HREF="http://cnls-www.lanl.gov/">Los Alamos National Lab, Center for Nonlinear Studies</A>

<DT><DD><LI><A HREF="http://sextant.ens-lyon.fr/welcome_english.html">Lyon</ A> Nonlinear Group

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="M">M</A></H1>

</DL>

<OL>

<DT><DD><LI><A HREF="http://www.bdt.com/home/brianhill/elsewhere.html">Mac Alife Page</A>

<DT><DD><LI><a href="http://www.cs.nott.ac.uk/Research/mig/">Machine Intelligence Group</a>

<DT><DD><LI><A href="http:/ /forum.swarthmore.edu/~jay/learn-game/">Machine Learning in Games</A>

<DT><DD><LI><A href= "http://www.ai.univie.ac.at/oefai/ml/ml-ressources.html">Machine Learning Information
Services</A> .

<DT><DD><LI><a href="http://www.cs.huji.ac.il/labs/learning/ lab_page.html">Machine Learning Lab</a>

<DT><DD><LI><A HREF="http://www.cs.wisc.edu/~shavlik/ml95wl/ procs.html">Machine Learning '95
workshop</A>

<DT><DD><LI><A HREF="http://www.bdt.com/home/brianhill/ elsewhere.html">Macintosh alife software</a>

<DT><DD><LI><A HREF="http://kal-el.ugr.es/macrophylon/ intro.html">Macrophylon</A> investigate
patterns/dynamics involved in building evolutionary trees

<DT><DD><LI><A HREF="http://www.uni-mainz.de/FB/Physik/Chaos/ chaos.html">Mainz: Johannes Gutenberg
University Nonlinear Dynamics Group</A>

<DT><DD><LI><a href="http://didecsl-f.epfl.ch:80/w3mantra/">MANTRA Home Page</ a> neural network
theory, hardware accelerators and applications

<DT><DD><LI><a href="http://www.wi.leidenuniv.nl/home/mvdweg/ alife.html">Marco's Maddening</a>
Artificial Life Page (<I>Netherlands</I>)

<DT><DD><LI><A HREF="http:/ /www.cs.wisc.edu/~smucker/EC.html">Mark Smucker's Evolutionary Computation
and Artificial Life</A>

<DT><DD><LI><a href="http://delphi.umd.edu/dynam.html">Maryland (UMD) Dynamical Systems and
Accelerator Theory</a>

<DT><DD><LI><a HREF="http://www-chaos.umd.edu/">Maryland (UMD) Chaos Web Home Page</a>

<DT><DD><LI><a href="http://www.acl.lanl.gov/HPCC/ automata_1.html">Mathematics of One-Dimensional
Cellular Automata</a>

<DT><DD><LI><A HREF="http://kal-el.ugr.es/pitis.html">MbitiWorld</a> DOS/ Windows program with
neural-net carnivorous/herbivorous evolving agents

<DT><DD><LI><A HREF="http://www.uio.no/~mwatz/memetics/index.html">Memetics</ A>
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<DT><DD><LI><A HREF="http://www.ens.fr:80/bioinfo/www/francais/perso/meyer/ meyer.html">Jean-Arcady
Meyer's Homepage</A>

<DT><DD><li><a href="http://isl.msu.edu/GA/">Michigan State University Genetic Algorithms Research and
Applications Group</a>

<DT><DD><LI><a href="http://www.ai.mit.edu/">MIT Artificial Intelligence Laboratory</a>

<DT><DD><LI><A HREF="http://www.media.mit.edu/">MIT Media-Lab</A>

<DT><DD><LI><A HREF="http://www.santafe.edu/~mm/">Melanie Mitchell's Homepage</A>

<DT><DD><LI><A HREF="http://www.dai.ed.ac.uk/groups/mrg/MRG.html">Mobile Robots Group</A> at the
University of Edinburgh

<DT><DD><LI><A HREF="http://www.cpsc.ucalgary.ca/projects/bmv/vmm/ title.html]">Visual Models of
Morphogenesis: A Guided Tour</A>

<DT><DD><LI><A HREF=http://www.fusebox.com/cb/morphs/docs.htm!> Morphs</A> Evolution Game
(<I>Pennsylvania</I>)

<DT><DD><LI><A HREF="http:/ /www.cogs.susx.ac.uk/users/davec/pe.html">Movies</ A> of evolved
pursuit/evasion strategies (<I>England</I>)

<DT><DD><LI><a href="http://http2.brunel.ac.uk:8080/~hssrkng/NNcourse/ entry.html">MSc Intelligent Systems
Neural Nets</a> course material

<DT><DD><LI><A href="http:/ /www.cs.utexas.edu/users/mfkb/ index.html">Multifunctional Knowledge Base
Group</A> (University of Texas at Austin)

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="N">N</A></H1>

</DL>

<OL>

<DT><DD><LI><a href="http://planchet.rutgers.edu/">Nanotechnology Archive</a>

<DT><DD><LI><a href="http://www.lucifer.com/~sean/Nano.html">Nanotechnology</ a> Links and Pointers

<DT><DD><LI><A href="http://fas.sfu.ca/cs/research/groups/NLL/ toc.html">Natural Language Laboratory</A>
(Simon Fraser University)

<DT><DD><LI><A href="http://cl-www.dfki.unisb.de/cl/registry/ draft.html">Natural Language Software
Registry</A> (German Research Institute for Al in Saarbruecken)

<DT><DD><LI><a href="http://hebb.cis.uoguelph.ca/home/ns.html">Natural Selection Research Group</a>
University of Guelph

<DT><DD><LI><A href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/alv/member/
www/navlab_home_page.html">NAVLAB</A> (Carnegie Mellon University)

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife /
packages/neoterics/">Neoterics</A> A Boids-like screensaver

<DT><DD><LI><a href="http://web.mit.edu/~redingtn/www/netadv/">The Net Advance of Physics</a> is a
journal/encyclopedia covering all areas of physics

<DT><DD><LI><A HREF="http:/ /alife.santafe.edu/alife/software/ netlife.html">Netlife</A> Evolving neural nets
in an environment

<DT><DD><LI><a href="http://www.d.umn.edu/~cbusch/dist/net-life-htmls/ netlife.html">Netlife page</a> by
Christopher G. Busch

<DT><DD><LI><a href="http://www.mech.gla.ac.uk/~nactftp/nact.html">Neural Adaptive Control
Technology</a>

<DT><DD><LI><A href="http://ftp.funet.fi/pub/sci/neural/www/ neural.html">Neural Archive Site</A> (Finnish
University)

<DT><DD><LI><a href="http://www.dcs.shef.ac.uk/research/groups/ainn/">Neural Computing</a>

<DT><DD><LI><A href="http://synap.neuro.sfc.keio.ac.jp/">Neural Computing Center</A> (Keio University,
Fujisawa, Japan)

<DT><DD><LI><a href="http://neural-server.aston.ac.uk/">Neural Computing Research Group</a> Neural
Computing Research Group at Aston University

<DT><DD><LI><A href= "http://www.emsl.pnl.gov:2080/docs/cie/neural/gateway-alpha.html">Neural Net Sites: A
Gateway To The World</A> (Pacific Northwest Laboratory)

<DT><DD><LI><a href="http://www.emsl.pnl.gov:2080/docs/cie/neural/ neural. homepage.html">Neural
Networks at Pacific Northwest National Laboratory</a>
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<DT><DD><LI><a href="http://ice.gis.uiuc.edu/Neural/neural.html">A Basic Introduction To Neural
Networks</a>

<DT><DD><LI><A HREF="http://www.msrc.pnl.gov:2080/docs/cie/neural/ neural. homepage.html">Neural
Networks</A> at the Molecular Science Research Center

<DT><DD><LI><A HREF="http://www.emsl.pnl.gov:2080/docs/cie/neural/ neural. homepage.html">Neural
Networks </A> at the Pacific Northwest Laboratory

<DT><DD><LI><A HREF="http://www.scs.unr.edu/~cbmr/research/subject/ neural.html">Neural Networks
(CBMR): List</A>

<DT><DD><LI><A HREF="http://laws.lanl.gov/x1_homepage.html">Neural Networks at Los Alamos</A>

<DT><DD><LI><a href="http://www.ai.univie.ac.at/oefai/nn/neufodi.html">Neural Networks in Diagnosis and
Forecasting Applications</a>

<DT><DD><LI><a href="http://www.cs.bgu.ac.il/~omri/NNUGA/">Neural Networks Using Genetic
Algorithms</a>

<DT><DD><LI><A href="ftp://me.uta.edu/pub/neural/annsim/">Neural Network Software</A>

<DT><DD><LI><a href="http://www/globalweb.co.uk/nctt/">Neurocomputing WWW site</a> British Department
of Trade and Industry

<DT><DD><LI><A HREF="http://www.neuronet.ph.kcl.ac.uk:80/neuronet/">NEuroNet</ A>

<DT><DD><LI><A HREF="ftp://archive.cis.ohio-state.edu/pub/ neuroprose">Neuroprose Archives</A> at Ohio
State University

<DT><DD><LI><A HREF="http://http2.sils.umich.edu/Public/nirg/ nirgl.html">Neurosciences Internet Resource
Guide</A> (Univ. of Michigan)

<DT><DD><LI><a href="news:comp.theory.cell-automata">Newsgroup: comp.theory.cell-automata</a>

<DT><DD><LI><a href="http://garfield.fe.up.pt:8001 /portugues/niar/ niar.html">NIA&R-Artificial Intelligence &
Robotics Group</a> :

<DT><DD><LI><A HREF="http://www.nbi.dk/CATS/">Niels Bohr Institute</a> CATS - Center for Chaos and
Turbulence Studies

<DT><DD><LI><A HREF="ftp:/ /ftp.uni-mainz.de/pub/chaos/chaosbib">Nonlinear Dynamics</A> (University of
Mainz) .

<DT><DD><LI><A HREF="http://www.cc.duth.gr/~mboudour/nonlin.html">Nonlinear dynamics and
complexity</A>

<DT><DD><LI><A HREF="http://rupert.physics.mun.ca/homepage.html">Nonlinear dynamics and patterns</A>
(Canada)

<DT><DD><LI><A HREF="http://www.physics.mcgill.ca/physics-services/ physics_complex.html">Nonlinear
Dynamics Site List</A> (Mcgill)

<DT><DD><LI><A HREF="http://tl13.lanl.gov/~nxt/intro.htm!l" >Nonlinear Dynamics and Topological Time Series
Analysis Archive</A>

<DT><DD><LI><A HREF="ftp://lyapunov.ucsd.edu/pub">Nonlinear Dynamics Archive</ A> UCSD

<DT><DD><LI><a href="http://xyz.lanl.gov/">Nonlinear Science e-Print Archive</ a>

<DT><DD><LI><a href="http://www.springer-ny.com/nst">Nonlinear Science Today</ a> (Springer-Verlag)

<DT><DD><LI><a href="http://www.cc.duth.gr/~mboudour/ nonlin.html">Nonlinearity and Complexity Home
Page</a>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page....</A></I>

</DL>

<DL><HR>

<H1><A NAME="0">0</A></H1>

</DL>

<OL>

<DT><DD><LI><a href="http://www.hsr.no/~onar/Octonion.html">Octonion Fractals</a>

<DT><DD><LI><a href="http:/ /www.phy.ohiou.edu/research/chaos.html">Ohio University: Nonlinear
Systems/Chaos Research</a> (Athens, OH)

<DT><DD><LI><A HREF="http:/ /www.cs.columbia.edu/~evs/gpsym95.html">On-line archive of the AAAI
Symposium on Genetic Programming</A>

<DT><DD><LI><A HREF="http://lautaro.fb10.tu-berlin.de/">Online Introduction to Evolution Strategies</A>

Germany
</OL>
<DL><DT><DD><LI><I><A HREF="#2aa">Back to top of this page.....</A></I>
</DL>
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<DL><HR>
<H1><A NAME="P">P</A></H1>
</DL>
<OL>
<DT><DD><LI><a HREF="http://www.emsl.pnl.gov:2080/docs/cie/neural/ neural.homepage.html">Pacific
Northwest Laboratory: Neural Nets</a> -
<DT><DD><li><a href="http://www.mat.sbg.ac.at/~uhl/GA.html">Parallel genetic algorithms</a>
<DT><DD><LI><A HREF="http://st-www.cs.uiuc.edu/users/patterns/ patterns.html">Patterns Home Page</A>
<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/pc-life/">PC-life</A> (ftp)
<DT><DD><LI><A HREF="http://www.math.psu.edu/weiss/ds.html">Penn State Dynamical Systems' group</A> -
<DT><DD><LI><a href="http://mugwump.ucsd.edu/bkeeley/work-stuff/ Alife_Bib.html">Philosophy of Artificial
Life Bibliography</a>
<DT><DD><LI><A HREF="http://alife.santafe.edu/alife /archives.html">Alife papers archive</A> at Alife Online
(SFI)
<DT><DD><LI><a href="http:/ /www.pcmp.caltech.edu">Physics of Computation Group at Caltech</a>
<DT><DD><LI><A HREF="http://hypatia.ucsc.edu:70/1/JPX">Plane Chaos</A> a hyperbook on discrete dynamics
in two dimensions
<DT><DD><LI><A href="ftp://boulder.colorado.edu/pub/generic-sources/">PlaNet</ A> a neural network
simulator
<DT><DD><LI><A HREF="http://www.missouri.edu/~polstab/">Nonlinear Politics</A>
<DT><DD><LI><A HREF="http:/ /alife.santafe.edu/alife /software/ polyworld.html">Polyworld</a> An
artificial-world for evolutionary studies
<DT><DD><LI><a href="http://www.agnld.uni-potsdam.de/Zentrum/d/ d.html">Potsdam University: Center for
Interdisiplinary Research in Nonlinear Dynamics</A> (Germany)
<DT><DD><LI><A HREF="http://www.io.com/~spofford/index.html">Primoridal Life</ a> A Windows 95 / NT
(x86) screen saver that evolves "biots"
<DT><DD><LI><A HREF="http://alife.santafe.edu/alife /software/ psoup.html">Primoridal Soup</a> artificial life
system that generates self-reproducing organisms from sterile soup
<DT><DD><LI><a href="http://math.wisc.edu/~griffeat/kitchen.html">Primordial Soup Kitchen</a> (David
Griffeath)
<DT><DD><LI><A HREF="http://pespmcl.vub.ac.be/" >Principia Cybernetica</A>
<DT><DD><LI><A HREF="http://www.krl.caltech.edu/~charles/alife-game/">Project Von Neumann</A> The
Game Universe
<DT><DD><LI><a href="ftp://publications.ai.mit.edu">Publications from MIT Al Lab</a> (ftp)
</OL>
<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>
</DL>
<DL><HR>
<H1><A NAME="Q">Q</A></H1>
</DL>
<OL>
<DT><DD><LI><A href="http://www.cs.utexas.edu/~qr/">Qualitative Reasoning Research Group</A> (University
of Texas)
<DT><DD><LI><a href="http://eve.physics.ox.ac.uk/QChome.htm!">Quantum Computation Homepage at
Oxford</a>
</OL>
<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>
</DL> -
<DL><HR> .
<H1><A NAME="R">R</A></H1>
</DL>
<OL> -
<DT><DD><LI><A HREF="http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/user/katia/www/ .
katia-home.html">Reactive Agents</a> (Carnegie Mellon University)
<DT><DD><LI><A HREF="http://www.ce.pdx.edu/~rseymour/">The Reed College Artificial Life Project</A>
<DT><DD><LI><A HREF="http://kant.irmkant.rm.cnr.it/gral.html">Research Group on Artificial Life</A>
Institute of Psychology, Rome, Italy
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<DT><DD><LI><a href="http://csli-www.stanford.edu/csli/9394reps/agents9394-nilsson.html">Research on
Autonomous Agents</a> (Stanford)

<DT><DD><LI><A href="http://www.seas.upenn.edu/~ale/cplxsys.html">Resource Guide to Complex Systems on
the Net</A>

<DT><DD><li><a href="http://reality.sgi.com/employees/craig/">Craig W. Reynolds' Homepage</a>

<DT><DD><LI><a href="ftp://ftp.csl.uiuc.edu">Robotica Simulation Program</a> (ftp)

<DT><DD><LI><a href="http://www.cs.indiana.edu/robotics/FAQ/ copy.html">Robotics FAQ</a>

<DT><DD><LI><a href="http://piglet.cs.umass.edu:4321/robotics.html">Robotics Internet Resources Page</a>

<DT><DD><LI><a href="http://robotics.jpl.nasa.gov">Robotic Systems & Advanced Computer Technology
Section</a> (JPL)

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<HI><A NAME="S">S</A></H1>

</DL>

<OL>

<DT><DD><LI><a href="http://www.nada.kth.se/nada/sans/index.html">SANS - Studies of Artificial Neural
Systems</a> :

<DT><DD><LI><A HREF="http://www.santafe.edu/" >Santa Fe Institute</A>

<DT><DD><LI><a href="http://arti.vub.ac.be/www/chaos/intro.html">Science at the Edge of Chaos</a>

<DT><DD><LI><A HREF="http://phenom.physics.wisc.edu/~shalizi/hyper-weird/ complexity.html">Sciences of
Complexity</A>

<DT><DD><LI><A HREF="http://www.tiac.net/users/Emergent/">Self-Organizing Emergent Behavior</A>

<DT><DD><LI><a href="http://www.ezone.com/sos/">Self-Organizing Systems</a>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/self/">Selfreplicating shar archive</A>

<DT><DD><LI><A HREF="http:/ /gal4.ge.uiuc.edu/illigal. home.html">Simple Classifier System</A>

<DT><DD><LI><a href="http://www.sri.andrews.edu/">Simulation Resources, Inc. (SRI)</a>

<DT><DD><LI><a href="ftp://funic.funet.fi/pub/sci/neural/SNNS" >SNNS </a> a neural network simulator
written at the University of Stuttgart, Germany

<DT><DD><LI><A HREF="http://www-rci.rutgers.edu/~mizrach/SNDE/ snde.html">Society for Nonlinear
Dynamics and Econometrics</A> (Rutgers)

<DT><DD><LI><a href="http://www.cogs.susx.ac.uk:80/users/christ/aisb/ ">Society for the study of artificial
intelligence and simulation of behavior (AISB)</a>

<DT><DD><LI><A HREF="http://www.cs.washington.edu/homes/etzioni/">Softbots</ a> (University of
Washington)

<DT><DD><LI><A HREF="http://www.smli.com/research/tcl/lists/AGENTS/ index.html#163">Software Agents
Mailing List</A> by thread

<DT><DD><LI><a href="http://info.latech.edu/~mike/ieee.html">Software Complexity in Rule-Based Systems</a>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
docs/spaceships/">Spaceships</A> in Conway's Game of Life

<DT><DD><LI><A HREF="http://research.Germany.EU.net:8080/~joke/rsc/ ships_toc.html">Spaceships</A> in
Conway's Game of Life (2)

<DT><DD><LI><A href="http:/ /ai.iit.nrc.ca/subjects/Speech.html">Speech Recognition and Synthesis</A>

<DT><DD><LI><A HREF="http://el.www.media.mit.edu/groups/el/Projects/ starlogo">Starlogo</a> A simple
complex systems simulations implemented in logo

<DT><DD><LI><a href="http://www.cs.monash.edu.au/~lloyd/tildeMML/MDL/ SC.html">Stochastic
Complexity</a>

<DT><DD><LI><a href="http://www-mitpress.mit.edu/SNDE/WWW /journal/ demo.html]">Studies in Nonlinear
Dynamics and Econometrics</a>

<DT><DD><LI><A HREF="http:/ / osiris.sund.ac.uk/ahu/sugal/home">SUGAL</A> a genetic algorithm package

<DT><DD><LI><A HREF="http://envy.cs.umass.edu/People/sutton/ archive.html">Sutton's Reinforcement
Learning Archive</A>

<DT><DD><LI><A HREF="http://www.santafe.edu/projects/swarm/">The Swarm Project</A> headed by Chris
Langton.

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>
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</DL>

<DL><HR>

<H1><A NAME="T">T</A></H1>

</DL>

<OL>

<DT><DD><LI><a href="http://t13.lanl.gov/">T-18</a> Complex Systems Group at Los Alamos National
Laboratory

<DT><DD><LI><A HREF="http://neuron.tau.ac.il/">Tel-Aviv University Neural Computation Group</A>

<DT><DD><LI><a HREF="http:/ /www.cs.utexas.edu/">Texas: UTCS Neural Nets Research Group</A>

<DT><DD><LI><A HREF="http://chaos.ph.utexas.edu:80/home.html">Texas: UT Center of Nonlinear Dynamics
(CNLD)</A>

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/
zooland/online/al96.ps.gz">Theory of Self-reproducing Automata and Life</A> by Hendrik
Tiedemann and Jorg Heitkotter

<DT><DD><LI><A HREF="http:/ /alife.santafe.edu/alife/software/ tierra.html">Tierra</a> is a system for studying
ecological and evolutionary dynamics by Tom Ray

<DT><DD><LI><A HREF=http://www.hip.atr.co.jp/~ray/tierra/tierra.html>Tierra home page</A>

<DT><DD><LI><A HREF=ftp://micros.hensa.ac.uk/micros/ibmpc/dos/h/h144/>Tierra</ A> simulator (DOS)

<DT><DD><LI><A HREF="http:/ /www.krl.caltech.edu/avida/ NetTierraWG.html">Tierra Working Group
report</A> from the Tierra Workshop

<DT><DD><LI><a HREF="http://www.krl.caltech.edu/~brown/complex.html">Titus' Collection of References to
Complex Systems</A>

<DT><DD><li><a href="http://www.geom.umn.edu/~trowley/genetic/">Toolkit for Visual Genetic
Programming</a>

<DT><DD><LI><A href="http://ai.iit.nrc.ca/subjects/Eliza.html">Turing Test, Eliza, Loebner Prize</A>

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL>

<HR><H1><A NAME="U">U</A></H1>

</DL>

<OL>

<DT><DD><LI><A HREF="ftp://ics.uci.edu/pub/machine-learning-databases/">UCI Repository of Machine
Learning Databases</A>

<DT><DD><LI><A HREF="http://www.ucl.ac.uk/~ucesjph/home.html">UCL</A> University College London
Program in Nonlinear Dynamics

<DT><DD><LI><a href="ftp://cognet.ucla.edu/pub/alife/papers">UCLA Artificial Life ftp site</a>

<DT><DD><li><a href="http://www.lifesci.ucla.edu/repository/alife/">UCLA Artificial Life Group</a>

<DT><DD><LI><a href="http://www.amsta.leeds.ac.uk/Applied/news.dir/ index.htm!">UK nonlinear news</a>

<DT><DD><LI><a href="http://www-personal.engin.umich.edu/~streak/ garg.html">UMich Genetic Algorithm
Research Group</a>

<DT><DD><LI><A HREF="http://einstein.unh.edu:1905/grad/ PhysicsDept.html#Nonlinear">UNH</A>
Nonlinear dynamics at the University of New Hampshire

<DT><DD><LI><A HREF="http://www.ccsr.uiuc.edu/">Urbana</A> Center for Complex Systems

<DT><DD><LI><A HREF="http://cado.maths.uwa.edu.au">UWA</A> University of Western Australia

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="V">V</A></HI1>

</DL>

<OL>

<DT><DD><LI><A HREF="http://compsci.cas.vanderbilt.edu/ch/ ch.html">Vanderbilt</A> Chaos book

<DT><DD><LI><a HREF="http://opal.vcu.edu/htm}/biomede/compdyn.htm!">Virginia Commonwealth University
Complex Dynamic Systems Research</A>

<DT><DD><LI><a href="ftp://think.com/users/karl/Welcome.html">Virtual Creatures</A> by Karl Sims (MPEG
movie and papers)
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<DT><DD><LI><A HREF="http:/ /www.cpsc.ucalgary.ca/projects/bmv/vmm/ title.html">Visual Models of
Morphogenesis: A Guided Tour</A>

<DT><DD><LI><a href= "http://www.cs.brandeis.edu/~zippy/alife-library.htm]">Virtual ALife Library </a>

<DT><DD><LI><a href="http://life.csu.edu.au/vl_complex/libraryl.html">Virtual Library on Complex
Systems</a>

<DT><DD><LI><A HREF="http:/ /web-hou.iapc.net/~koops/vivarium/ vivarium.html">Vivarium</A> is an
interactive simulation of the evolution of behavior

<DT><DD><LI><A HREF="http://www.cs.brandeis.edu/dept/index.html">Volen National Center for Complex
Systems</A> at Brandeis University

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL><HR>

<H1><A NAME="W">W</A></H1>

</DL>

<OL>

<DT><DD><LI><A HREF="http:/ /fuzine.mt.cs.cmu.edu/mlm/signidr94.html">Web Agent Related Research</a>
(Carnegie Mellon University)

<DT><DD><LI><a HREF="http://wissgi.weizmann.ac.il/physics/ phys_nlin.html">Weizmann Institute (Israel)
non-linear dynamics</a>

<DT><DD><LI><A HREF="http://aurora.physics.uwo.ca/stockwel/ time_series.html">Western Ontario (UWO at
London) Time Series Analysis</A> (Canada)

<DT><DD><LI><a href="http://www.nd.com/welcome/whatisnn.htm">What is an Artificial Neural Network?</a>

<DT><DD><LI><a href="http://www.nonlin.tu-muenchen.de/chaos/wiw.html">Who Is Who Handbook of
Nonlinear Dynamics</A> (Munchen)

<DT><DD><LI><A HREF="http://newciv.org/worldtrans/whole.html" >Whole Systems</ A>

<DT><DD><LI><A HREF="http://www.seattleantioch.edu/WholeSystemn/">Whole Systems Design</A>

<DT><DD><LI><A HREF="http:/ /netq.rowland.org/sw/swhp.html">Stewart Wilson's Homepage</A>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/winca">WinCA</A> A fast cellular automata simulator with Windows GUI, by Bob Fisch
and David Griffeath

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/win-ga">WinGA</A> A genetic algorithm simulator with Windows GU]I, by lan Munro

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/
packages/winlife">WinLife</A> A nice implementation of John Conway's "Life Game"

<DT><DD><LI><A HREF="ftp://ftp.digital.com/pub/games/ winlife.zip">WinLife.zip</A> by John Harper, for
PC's running MS-Windows 3.1

<DT><DD><LI><A HREF="ftp://ftp.cs.jhu.edu/pub/callahan/conways_life/ wlife.zip">W-Life</A> (MS-Windows
3.1 port of XLife 2.0)

<DT><DD><LI><a href="http://www.ai.univie.ac.at:/oefai/nn/servers.html">WWW Neural Network Home
Pages</A> (University of Vienna)

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL>

<HR><H1I><A NAME="X">X</A></H1>

</DL>

<OL>

<DT><DD><LI><A HREF="ftp:/ /ftp.Germany.EU.net/pub/research/softcomp/Alife/ chris-langton/">Xca</A> A
self-replicating cellular automaton by Chris Langton

<DT><DD><LI><A HREF="ftp:/ /ai.toronto.edu/pub/xerion/">Xerion</A> a neural network simulator

<DT><DD><LI><a href="ftp://parcftp.xerox.com/pub/dynamics">Xerox PARC</a> some papers on the evolution
of cooperative behaviour

<DT><DD><LI><A HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ packages/xlife/">Xlife</A>
The fastest life package (version 3.0)

<DT><DD><LI><A HREF="http://www.ccsf.caltech.edu/ismap/image.html">Xmorphia</ A> morphogenesis from
a reaction-diffusion system
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<DT><DD><LI><A HREF="http://penguin.phy.bnl.gov/www/xtoys">Xtoys</A> programs for X windows that
self-organized criticality

<DT><DD><LI><A HREF="htp://www.mindspring.com/~zsol/nnintro.html">ZSolutions</ a> an introduction to
neural networking

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL>

<HR><H1><A NAME="Y">Y</A></HI1>

</DL>

<OL> <

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>

</DL>

<DL>

<HR><H1><A NAME="Z">Z</A></HI1>

</DL>

<OL>

<DT><DD><LI><a href="http://alife.santafe.edu:80/~joke /zooland/">Zooland</a>

<DT><DD><LI><A HREF="http://www.d.umn.edu/~cbusch/toolbox.html">ZooLife</A> an alife application
written in C++ for UNIX

L

</OL>

<DL><DT><DD><LI><I><A HREF="#aa">Back to top of this page.....</A></I>
</DL>

<hr>
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Appendix B: Glossary of Terms

: Adaptation
|
i Any change in the structure or function of an entity (say, a biological
. organism) that allows it to survive and reproduce more effectively in its
N environment.
Algorithmic Complexity

A measure of the complexity of a problem. Typically defined as the size of the
smallest program that computes the given problem or that generates a
complete description of it.

Animats

Artificial animals consisting of both software and hardware. Typically designed
to be able to adapt to their environment over time.

Artificial Life

This is not a concept that is yet ready to be rigorously defined. The most
concise, but still far from rigorous definition, is simply: life as synthesized by
man rather than by nature. One of the basic tenets of this still-infant field is
the belief that life is not unique to its biological (and, as yet, only known)
form, but is a more general property of the organization of matter. Artificial
life explores life as it could be as opposed to life as we know it to be.

Attractor

Dissipative dynamical systems are characterized by the presence of some sort
of internal "friction” that tends to contract phase-space volume elements.
Contraction in phase space allows such systems to approach a subset of the
phasespace called an attractor as the elapsed time grows large. Attractors
therefore describe the long-term behavior of a dynamical system. Steady state
(or equilibrium) behavior corresponds to fixed-point attractors, in which all
trajectories starting from the appropriate basin-of-attraction eventually
converge onto a single point. For linear dissipative dynamical systems, fixed
point attractors are the only possible type of attractor. Nonlinear systems, on
the other hand, harbor a much richer spectrum of attractor types. For
example, in addition to fixed-points, there may exist periodic attractors such
as limit cycles. There is also an intriguing class of chaotic attractors called
strange attractors that have a complicated geometric structure (see Chaos and
Fractals).

Autonomous (or Adaptive-) Agent

An entity that, by sensing and acting upon its environment, tries to fulfill a set
of goals in a complex, dynamic environment
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® it can sense the environment through its sensors and act on the
environment through its actuators

® it has an internal information processing and decision making
capability

® it can anticipate future states and possibilities, based on internal models
(which are often incomplete and/or incorrect)

© this anticipatory ability often significantly alters the aggregate
behavior of the system of which an agent is part

® an agent's goals can take on diverse forms:
© desired local states
© desired end goals
© selective rewards to be maximized

© internal needs (or motivations) that need to be kept within desired
bounds

® since a major component of an agent's environment consists of other
agents, agents spend a great deal of their time adapting to the
adaptation patterns of other agents

Autoplectic Systems

Consider a dynamical system whose behavior appears random or chaotic.
There are two ways in which an apparent randomness can occur: (1) external
noise, so that if the evolution of the system is unstable, external perturbations
amplify exponentially with time - such systems are called homoplectic; (2)
internal mechanisms, so that the randomness is generated purely by the
dynamics itself and does not depend on any external sources or require that
randomness be present in the initial conditions - such systems are called
autoplectic systems. An example of an autoplectic system is the
one-dimensional, two-state, two neighbor Cellular Automaton rule-30, starting
from a single non-zero site. The temporal sequence of binary values starting
from that single non-zero initial seed are completely random, despite the fact
that the evolution is strictly deterministic and the initial state is ordered.

Autopoiesis

Autopoiesis literally means "self-reproduction,” and expresses a fundamental
complementarity between structure and function. More precisely, the term
refers to the dynamics of non-equilibrium structures; that is, organized states
(sometimes also called dissipative structures) that remain stable for long
periods of time despite matter and energy continually flowing through them.
A vivid example of a nonequilibrium structure is the Great Red Spot on
Jupiter, which is essentially a gigantic whirlpool of gases in Jupiter's upper
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atmosphere. This vortex has persisted for a much longer time (on the order of
centuries) than the average amount of time any one gas molecule has spent
within it.

Backpropagation Algorithm

The backpropagation algorithm is a learning rule for multi-layered Neural
Networks, credited to Rumelhart and McClelland. The algorithm gives a
prescription for adjusting the initially randomized set of synaptic weights
(existing between all pairs of neurons in each successive layer of the network)
so as to maximize the difference between the network's output of each input
fact and the output with which the given input is known (or desired) to be
associated. The backpropagation rule takes its name from the way in which the
calculated error at the output layer is propagated backwards from the output
layer to the N* hidden layer to the (N-1)* hidden layer, and so on. Because
this learning process requires us to to "know" the correct pairing of
inputoutput facts beforehand, this type of weight adjustment is called
supervised learning.

Basin of Attraction

The basin of attraction is the ensemble of points P such that if the trajectory
starts from P it approaches the Attractor.

Bifurcation

The splitting into two modes of behavior of a system that previously displayed
only one mode. This splitting occurs as a control parameter is continuously
varied. In the Logistic Equation, for example, a period-doubling bifurcation
occurs whenever all the points of period-2° cycle simultaneously become
unstable and the system becomes attracted to a new period-2™" cycle.

Boolean Function

A function that maps an n-tuple of binary values - (x,, X,, ..., X,), where xi =0
or 1 for all i - to another binary value (either 0 or 1). There are clearly 2A(2")
possible Boolean functions that can defined for a given n-tuple.

Cantor Set

A simple example of a Fractal set of points having noninteger Hausdorff
Dimension. For example, the triadic Cantor set is constructed as follows: take
the unit interval (= [0,1]) and generate a new set by deleting the open interval
(1/2, 2/3); that is, by deleting the middle third. Generate a new set by
deleting the middle thirds (1/9, 2/9) and (7/9, 8/9) from the previous set
with the middle third removed. The Cantor set is essentially what remains of
the unit interval in the limit of generating successive "middle third" deleted
sets from the original set. It can be shown that the Fractal Dimension of this
set is approximately equal to 0.6309.
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Catastrophe Theory

Catastrophe theory, introduced by Thom in the 1960s, is a mathematical
formalism for modeling nonlinear systems whose behavior is determined by
the actions of a small number of driving parameters. In particular, it applies to
systems that undergo either gradual or sudden changes in behavior due to
gradually changing forces. It has been applied to many problems in
mathematics, physics and the social sciences. Thom called the sudden changes
that take place in a system "catastrophes” and developed a theory as a method
of analyzing and classifying these changes. Thom's theorem asserts that the
stationary state behavior of all systems that have up to four control parameters
(or input variables) and two behavior (or output) variables, and which also
have an associated potential function, can be described using one of seven
elementary catastrophes.

Cellular Automata

Cellular automata (CA) are a class of spatially and temporally discrete,
deterministic mathematical systems characterized by local interaction and an
inherently parallel form of evolution. First introduced by von Neumann in the
early 1950s to act as simple models of biological self-reproduction, CA are
prototypical models for complex systems and processes consisting of a large
number of identical, simple, locally interacting components. The study of
these systems has generated great interest over the years because of their
ability to generate a rich spectrum of very complex patterns of behavior out of
sets of relatively simple underlying rules. Moreover, they appear to capture
many essential features of complex self-organizing cooperative behavior
observed in real systems. Although much of the theoretical work with CA has
been confined to mathematics and computer science, there have been
numerous applications to physics, biology, chemistry, biochemistry, and
geology, among other disciplines. Some specific examples of phenomena that
have been modeled by CA include fluid and chemical turbulence, plant
growth and the dendritic growth of crystals, ecological theory, DNA evolution,
the propagation of infectious diseases, urban social dynamics, forest fires, and
patterns of electrical activity in neural networks. CA have also been used as
discrete versions of partial differential equations in one or more spatial
variables.

Cellular Games

A cellular game is a dynamical system in which sites of a discrete lattice play a
"game" with neighboring sites. Strategies may be deterministic or stochastic.
Success is usually judged according to a universal and fixed criterion.
Successful strategies persist and spread throughout the lattice; unsuccessful
strategies disappear.

Chaos

Deterministic chaos refers to irregular or chaotic motion that is generated by
nonlinear systems evolving according to dynamical laws that uniquely
determine the state of the system at all times from a knowledge of the system's
previous history. It is important to point out that the chaotic behavior is due
neither to external sources of noise nor to an infinite number of
degrees-offreedom nor to quantum-mechanical-like uncertainty. Instead, the
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source of irregularity is the exponential divergence of initially close
trajectories in a bounded region of phase-space. This sensitivity to initial
conditions is sometimes popularly referred to as the "butterfly effect,” alluding
to the idea that chaotic weather patterns can be altered by a butterfly flapping
its wings. A practical implication of chaos is that its presence makes it
essentially impossible to make any long-term predictions about the behavior of
a dynamical system: while one can in practice only fix the initial conditions of
a system to a finite accuracy, their errors increase exponentially fast.

Chaotic Control

It has recently been suggested that the extreme sensitivity of chaotic systems to
small perturbations to to initial conditions (the so called "butterfly effect") can
be exploited to stabilize regular dynamic behaviors and to effective "direct”
chaotic trajectories to a desired state. This is a capability that has no
counterpart in nonchaotic systems for the ironic reason that the trajectories in
nonchaotic systems are stable and thus relatively impervious to desired
control. A recent survey article (Grebogi, Ott, et. al.) lists applications for
communications (in which chaotic fluctuations can be put to use to send
controlled, pre-planned signals), for physiology (controlling chaos in heart
rhythms), for fluid mechanics and chemical reactions. As another recent
example, a few years ago NASA used small amounts of residual hydrazine fuel
to steer the ISEE-3/ICE spacecraft to its rendezvous with a comet 50 million
miles away. This was possible because of the sensitivity of the three-body
problem of celestial mechanics to small perturbations.

Classifier Systems

Classifier systems were introduced by John Holland as an attempt to apply
Genetic Algorithms to cognitive tasks. They are similar to production systems
of the "if...then" variety in artificial intelligence. A classifier system typically
consists of (1) a set of detectors (or input devices) that provide information to
the system about the state of the external environment, (2) a set of effectors
(or output devices) that transmit the classifier's conclusions to the external
environment, (3) a set of rules (or classifiers), consisting of a condition and
action, and (4) a list of messages. Learning is supervised as in multilayered
Neural Networks.

Class-P Problems

The Computational Complexity of a problem is defined as the time it takes for
the fastest program running on a universal computer - as measured in
number of computing steps, say N — to compute the solution to the problem.
The complexity is then classified according to how fast N grows as a function
of the problem size, 5. The first non-trivial class of problems — class-P — consists
of problems for which the computation time increases as some polynomial
function of s. Problems that can be solved with polynomial-time algorithms are
called tractable; if they are solvable but are not in the class-P, they are called
intractable.

Co-Adaptation/Co-Evolution

The evolutionary process of a biological species in nature is often described as
though that species were trying to adapt to a fixed environment. However,
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such a description only crudely approximates what really happens. In nature,
the "environment" consists of both a relatively (but not completely) stable
physical environment as well as other species of organisms that are
simultaneously trying to adapt to their environment. The actions of each of
these other species typically affects the actions of all other species that occupy
the same physical environment. In biology (and hence Artificial Life and
studies involving Genetic Algorithms), the terms "co-adaptation” and
"co-evolution” are sometimes used to refer to the fact that all species
simultaneously co-adapt and co-evolve in a given physical environment.

Complex Adaptive Systems

Macroscopic collections of simple (and typically nonlinearly) interacting units
that are endowed with the ability to evolve and adapt to a changing
environment.

Complexity

An extremely difficult "I know it when I see it" concept to define, largely
because it requires a quantification of what is more of a qualitative measure.
Intuitively, complexity is usually greatest in systems whose components are
arranged in some intricate difficult-to-understand pattern or, in the case of a
dynamical system, when the outcome of some process is difficult to predict
from its initial state. In its lowest precisely when a system is either highly
regular, with many redundant and/or repeating patterns or when a system is
completely disordered. While over 30 measures of complexity have been
proposed in the research literature, they all fall into two general classes:

® Static Complexity -~ which addresses the question of how an object or
system is put together (i.e. only purely structural informational aspects
of an object), and is independent of the processes by which information
is encoded and decoded

® Dynamic Complexity ~ which addresses the question of how much
dynamical or computational effort is required to describe the
information content of an object or state of a system

Note that while a system's static complexity certainly influences its dynamical
complexity, the two measures are not equivalent. A system may be structurally
rather simple (i.e. have a low static complexity), but have a complex dynamical
behavior.

Computational Complexity

Computational complexity measures the time and memory resources that a
computer requires in order to solve a problem. A somewhat more robust
measure may be defined by invoking the Universal Turing Machine. The
Computational Complexity of a problem is then defined as the time it takes
for the fastest program running on a universal computer (as measured in
number of computing steps) to compute the solution to the problem.
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Computational Irreducibility

Much of theoretical physics has traditionally been concerned with trying to
find "shortcuts” to nature. That is to say, with trying to find methods that are
able to reproduce a final state of a system by knowing the initial state but
without having to meticulously trace out each step from the initial to final
_ states. The fact that we can write down a simple parabola as a path a thrown
object makes in a gravitational field is an example of an instance where this
might be possible. Clearly such shortcuts ought to be possible in principle if
the calculation is more sophisticated than the computations the physical
system itself is able to make. But consider a computer. Because a computer is
itself physical system, it can determine the outcome of its evolution only by
explicitly following it through. No shortcut is possible. Such computational
irreducibility occurs whenever a physical system can act as a computer. In such
cases, no general predictive ability is possible. Computational irreducibility
implies that there is a highest level at which abstract models of physical
systems can be made. Above that level, one can model only by explicit
simulation.

Computational Universality

Computational universality is a property of a certain class of computers such
that changes in input alone allow any computable function to be evaluated
without any change in internal construction. Universal computers can thus
simulate the operation of any other computer, given that their input is suitably
coded. Conway's Life Game, for example, has been shown to be a universal
computer. This means that with a proper selection of initial conditions (i.e.
the initial distribution of "live" and "dead" cells), Life can be turned into a
general purpose computer. This fact fundamentally limits the overall
predictability of Life's behavior. The Halting Theorem, for example, asserts
that there cannot exist a general algorithm for predicting when a computer
will halt its execution of a given program. Given that Life is a universal
computer - so that the Halting theorem applies ~ this means that one cannot,
in general, predict whether a particular starting configuration of live and dead
cells will eventually die out. No shortcuts are possible, even in principle.

Conservative Dynamical Systems

In contrast to Dissipative Dynamical Systems, conservative systems preserve
Phase Space volumes and hence cannot display any attracting regions in phase
space; there can be no fixed points, no limit cycles and no strange attractors.
There can nonetheless be chaotic motion in the sense that points along
particular trajectories may show sensitivity to initial conditions. A familiar
example of a conservative system from classical mechanics is that of a
Hamiltonian system.

Cost Function
In optimization problems, the cost function measures how good a particular

solution to the problem is; the higher its value the better the solution. Also
called the fitness function.
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Coupled-Map Lattices

Generic Cellular Automata (CA) are dynamical systems in which space, time
and the local state space are all discretized. Coupled-map lattices are simple
generalizations of CA in which space and time remain discrete, but in which
the individual site values are allowed to take on continuous values.

Criticality

“Criticality" is a concept borrowed from thermodynamics. Thermodynamic
systems generally get more ordered as the temperature is lowered, with more
and more structure emerging as cohesion wins over thermal motion.
Thermodynamic systems can exist in a variety of phases - gas, liquid, solid,
crystal, plasma, etc. — and are said to be critical if poised at a phase transition.
Many phase transitions have a critical point associated with them, that
separates one or more phases. As a thermodynamic system approaches a
critical point, large structural fluctuations appear despite the fact the system is
driven only by local interactions. The disappearance of a characteristic length
scale in a system at its critical point, induced by these structural fluctuations, is
a characteristic feature of thermodynamic critical phenomena and is universal
in the sense that it is independent of the details of the system's dynamics. (See
Self-Organized Criticality)

Crossover Operator

One of three basic genetic operations used in Genetic Algorithms.
Reproduction makes a set of identical copies of a given chromosome, where
the number of copies depends on the chromosome's fitness. The crossover
operator exchanges subparts of two chromosomes, where the position of the
crossover is randomly selected, and is thus a crude facsimile of biological
sexual recombination between two single-chromosome organisms. The
mutation operator randomly flips one or more bits in the chromosome, where
the bit positions are randomly chosen.

Dissipative Structure

An organized state of a physical system whose integrity is maintained while the
system is far from equilibrium. Example: the great Red-Spot on Jupiter.
Dissipative Dynamical Systems Dissipative systems are dynamical systems that
are characterized by some sort of "internal friction” that tends to contract
phase space volume elements. Phase space contraction, in turn, allows such
systems to approach a subset of the space called an Attractor (consisting of a
fixed point, a periodic cycle, or Strange Attractor), as time goes to infinity.

Edge-of-Chaos

The phrase "edge-of-chaos” refers to the idea that many complex adaptive
systems, including life itself, seem to naturally evolve towards a regime that is
delicately poised between order and chaos. More precisely, it has been used as
a metaphor to suggest a fundamental equivalence between the dynamics of
phase transitions and the dynamics of information processing. Water, for
example, exists in three phases: solid, liquid and gas. Phase-transitions denote
the boundaries between one phase and another. Universal computation - that
is, the ability to perform general purpose computations and which is arguably
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an integral property of life - exists between order and chaos. If the behavior of
a system is too ordered, there is not enough variability or novelty to carry on
an interesting calculation; if, on the other hand, the behavior of a system is
too disordered, there is too much noise to sustain any calculation. Similarly, in
the context of evolving natural ecologies, "edge-of-chaos” refers to how - in
order to successfully adapt - evolving species should be neither too methodical
nor too whimsical or carefree in their adaptive behaviors. The best exploratory
strategy of an evolutionary "space” appears at a phase transition between order
and disorder. Despite the intuitive appeal of the basic metaphor, note that
there is currently some controversy over the veracity of this idea.

Emergence

Emergence refers to the appearance of higher-level properties and behaviors
of a system that — while obviously originating from the collective dynamics of
that system's components — are neither to be found in nor are directly
deducable from the lower-level properties of that system. Emergent properties
are properties of the "whole” that are not possessed by any of the individual
parts making up that whole. Individual line of computer code, for example,
cannot calculate a spreadsheet; an air molecule is not a tornado; and a neuron
is not conscious. Emergent behaviors are typically novel and unanticipated.

Entropy

A measure of the degree of randomness or disorder in a system. Determines a
system's capacity to evolve irreversibly in time. Specific definitions vary
depending on the type of system considered. Examples: (1) in statistical
systems, the entropy is proportional to the logarithm of the total number of
possible states with the same energy as the state under consideration.; (2) in
classical thermodynamics, the differential change in entropy of a system near
equilibrium is the differential change in absorbed heat divided by the system
temperature; (3) in nonlinear deterministic dynamical systems, the
Kolmogorov-Sanai entropy is often used as a measure. It is defined as the sum
of the positive Lyapunov Exponents of the system.

Ergodic System

An ergodic dynamical system is one whose trajectory eventually "covers” the
entire phase space. Put another way, given any point P in the phase space, the
trajectory will approach P arbitrarily closely for sufficiently large times t.

Ergodic Theory

A branch of applied mathematics that uses statistical concepts to describe
average properties of deterministic dynamical systems. The ergodic hypothesis
(which asserts that a phase-space average of a measurable X is equal to its
time-average)provides the basis for classical statistical mechanics. Attempts at
providing a rigorous mathematicalvproof od the ergodic hypothesis include
Poincare's recurrence theorem (which asserts that a trajectory will return to any
neighborhood of its initial state if one waits loing enough) and the ergodic
theorems of Birkhoff and von Neumann.
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Evolution

A general term referring to the dynamical unfolding of behavior over time.
Darwinian evolution refers to the unfolding of higher (i.e. more complex) life
forms out of lower life forms.

Evolutionary Programming

Evolutionary programming is essentially an application of genetic algorithms
to computer programs. Typically the genome is represented by a LISP
expression, so that what evolves is a population of programs, rather than
bit-strings as in the case of a usual genetic algorithm. For references see Koza
[179] and the WWW sources listed in appendix A.

Evolutionary Stable Strategy

A concept from a generalized form of Game Theory. Animals are endowed
with a finite set of possible strategies that they can use in their interactions
with other animals. Strategies may be "pure,” in which the animal acts
according to a prescribed set of instructions in all contexts, or "mixed," in
which the animal adopts different strategies with different probabilities. The
evolutionary stable strategy (ESS) is a strategy, or set of strategies such that if it
is adopted by all animals no other strategy can invade the population.

Finite Automata

Human languages can, conceptually, be regarded as a set of rules for
constructing sequences of symbols according to a fixed set of rules of
composition in order to convey meaning. One can therefore consider using a
Cellular Automaton as a formalism for studying the abstract properties of
language. To be more precise, a finite automaton M is defined to consist of a
finite alphabet A, a finite set of states X, and a state-transition function f: X x A
=> X that gives the next state given the current state and the current input
symbol. (There is also a set T in X, which is the set of final or accepting states
of the automaton.)

Fitness Landscape

A name for the landscape representing the fitness measure (or Cost Function)
of a problem. Examples: Traveling Salesman Problem, survivability of a real or
virtual creature.

Flicker- (or 1/f-) Noise

Whenever the power spectral density, S(f), scales as f ! the system is said to
exhibit 1/f-noise (or flicker-noise). Despite being found almost everywhere in
nature — 1/f-noise has been observed in the current fluctuations in a resistor,
in highway traffic patterns, in the price fluctuations on the stock exchange, in
fluctuations in the water level of rivers, to name just a few instances ~ there is
currently no fundamental theory that adequately explains why this same kind
of noise should appear in so many diverse kinds of systems. What is clear is
that since the underlying dynamical processes of these systems are so
different, the common bond cannot be dynamical in nature, but can only be a
kind of "logical dynamics” describing how a system's degrees-of-freedom all
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interact. self-organized criticality may be a fundamental link between temporal
scale invariant phenomena and phenomena exhibiting a spatial scale
invariance. Bak, et. al., argue that 1/f noise is actually not noise at all, but is
instead a manifestation of the intrinsic dynamics of Self-Organized Critical
systems.

Fractals

Fractals are geometric objects characterized by some form of self-similarity;
that is, parts of a fractal, when magnified to an appropriate scale, appear
similar to the whole. Coastlines of islands and continents and terrain features
are approximate fractals. The Strange Attractors of nonlinear dynamical
systems that exhibit deterministic Chaos typically are fractals.

Fractal Dimension

Suppose a set can be covered by a finite number N of segments of length L.
There is a simple scaling relationship between these two numbers. For a line
segment, L grows as 1/R; for a square, L grows as 1/ R%; for a cube, L grows as
1/R% and so on. The fractal dimension D is defined by generalizing this
intuitive scaling: D = lim, , In(N)/(In(1/R), where In(x) is the natural
logarithm. Sometimes also called the Hausdorff dimension or the Kolmogorov
capacuy.

Frustration

In Spin Glasses, a phenomenon in which individual magnetic moments
receive competing ordering instructions via different routes, because of the
variation of the interaction between pairs of atomic moments with separation.

Fuzzy Logic

Fuzzy set theory provides a formalism in which the conventional binary logic
based on choices "yes" and "no" is replaced with a continuum of possibilities
that effectively embody the alternative "maybe”. Formally, the characteristic
function of set X defined by f(x) =1 for all x in X and f(x)=0 for all x not in X
is replaced by the membership function 0 < m(x) < 1 for all ¢ in X. The
mathematics of fuzzy set theory was originated by L. A. Zadeh in 1965.

Genetic Algorithms

Genetic algorithms are a class of heuristic search methods and computational
models of adaptation and evolution based on natural selection. In nature, the
search for beneficial adaptations to a continually changing environment (i.e.
evolution) is fostered by the cumulative evolutionary knowledge that each
species possesses of its forebears. This knowledge, which is encoded in the
chromosomes of each member of a species, is passed from one generation to
the next by a mating process in which the chromosomes of "parents" produce
"offspring” chromosomes. Genetic algorithms mimic and exploit the genetic
dynamics underlying natural evolution to search for optimal solutions of
general combinatorial optimization problems. They have been applied to the
travelling salesman problem, VLSI circuit layout, gas pipeline control, the
parametric design of aircraft, neural net architecture, models of international
security, and strategy formulation.
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Genotype

The genetic instruction code of an individual.
Hamiltonian System

A dynamical system that conserves volumes in phase space. Examples include
mechanical oscillators without friction and the motion of a planet.

Hausdorff Dimension

For an operational definition of Hausdorff dimension, proceed as follows:
Suppose a set can be covered by a finite number N of segments of length L.
There is a simple scaling relationship between these two numbers. For a line
segment, L grows as 1/R; for a square, L grows as 1/R2; for a cube, L grows as
1/R3, and so on. The Hausdorff dimension D is defined by generalizing this
intuitive scaling: D = imR->0 In(N)/(In(1/R), where In(x) is the natural
logarithm. Sometimes also called the fractal dimension or the Kolmogorov
capacity.

Hierarchy

Hierarchies consist of levels each of which include all lower levels; i.e. systems
within systems within systems...within the total system in question. Evolution in
complex systems leads to differentiation in multilevel hierarchic systems.

Homoclinic Point

A point in Phase Space of a nonlinear dynamical system that evolves to a point
of unstable equilibrium in infinite time. Homoclinic Orbit The ensemble of
points in the Phase Space of a nonlinear dynamical system that all evolve to a
point of unstable equilibrium after an infinite time.

Hopf-Bifurcation

In the Logistic Map, a fixed point may lose its stability by splitting (or
bifurcating) into a pair of points that form a period two orbit. Another
common way in which a point may become unstable is by effectively turning
into a small circle that then increases in size, deforms and becomes unstable as
the controlling parameter is increased. This is called the Hopf Bifurcation.

Hypercycle

A scenario for the origin of self-replicating molecular systems proposed by
Manfred Eigen. The scenario involves template-instructed replicating cycles
consisting of feedback loops in which molecule A generates molecule B,
molecule B generates molecule C, and molecule C generates molecule A, and
SO on.

Information Dimension
Partition a d-dimensional Phase Space into boxes of volume ed. The

probability of finding a point of an Attractor in box i is p,(€) = N,(g)/N(g),
where N;(€) is the number of points in the ith box and N(g) is the total
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number of non-empty boxes. p;(€) is the relative frequency with which the ith
box is visited. The amount of information required to specify the state of the
system to within an accuracy "¢" (or, equivalently, the information gain in
making a measurement that is uncertain by an amount "¢"), is given by . The

information dimension, D,, of an attractor is then defined to be D, = lim .,

I(e)/In(1/¢).
Information Theory

Like the physically primitive notions of mass and energy of a particle, the
information content, I, of an arbitrary measurement or message composed of
particular symbol sequence, is itself a primitive concept. While the roots of
information theory extend back to the definition of the classical entropy of a
physical system introduced by Clausius in 1864 and Boltzman's probabilistic
re-interpretation of classical entropy in 1896, the mathematical formalism for
measuring I is due largely to a seminal 1948 paper by Claude E. Shannon.
Within the context of sending and receiving messages in a communication
system, Shannon was interested in finding a measure of the information
content of a received message. Shannon's approach was to obtain a measure of
the reduction of uncertainty given some a-priori knowledge of the symbols
being sent. Suppose we are given N different and a-priori equally likely
possible outcomes. A measure of the information gain, I, is obtained by
required that I be additive for independent events. That is to say, if there are
two independent sets of outcomes N, nd N,, so that the total number of
outcomes is N = N, + N,, it is required that I(N, * N,) = I(N,) + I(N,). This
requirement is uniquely satisfied by the function I= ¢ log(N), where "c" is an
arbitrary constant.

Intermittency

A term used in the study of nonlinear dynamical systems describing the
changes between quiet, regular periods of activity (called the laminar phase)
and periods of wild, chaotic oscillation (called bursts). Intermittency is a
common route to chaos in physical systems.

Kolmogorov Entropy

The Kolmogorov entropy (or K-entropy) is a useful measure by which to
characterize chaotic motion in an arbitrary-dimensional phase space. Loosely
speaking, the K-entropy is proportional to the rate at which information about
the state of a dynamical system is lost in the course of time. It is related to the
average Lyapunov Exponent, which measures the exponential rate of
divergence of nearby trajectories.

Lattice Gas Models

Lattice gases are microlevel rule-based simulations of macro-level fluid
behavior. The Navier-Stokes Equations, the fundamental equations describing
incompressible fluid flow, are in general analytically intractable. Lattice-gas
models provide a powerful new tool in modeling real fluid behavior. The idea
is to reproduce the desired macroscopic behavior of a fluid by modeling the
underlying microscopic dynamics. In order to achieve an Emergence of a
suitable macrodynamics out of a discrete microscopic substrate, one must have
three basic ingredients: (1) local thermodynamic equilibrium, (2)
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conservation laws, and (3) a "scale separation" between the levels at which the
microscopic dynamics takes place (among kinetic variables living on a
micro-lattice) and the collective motion itself appears (defined by
hydrodynamical variable on a macro-attice). Another critical feature is the
symmetry of the underlying lattice. While there are many basic variants of the
model, one can show that there is a well-defined minimal set of rules that
define a lattice-gas system whose macroscopic behavior reproduces that
predicted by the Navier-Stokes equations exactly.

Life Game

Invented by the mathematician John Conway, Life is arguably the most widely
known Cellular Automaton rule. It was extensively popularized by Martin
Gardner in his "Mathematical Games" department in Scientific American in
the early 1970s. Life is "played” using the eight nearest-neighbors on a lattice,
and consists of (1) seeding the lattice with some pattern of "live" and "dead"
cells, and (2) simultaneously (and repeatedly) applying the following three
rules to each cell of the lattice at discrete time steps:

® Birth: replace a previously dead cell with a live one if exactly 3 of its
neighbors are alive

® Death: replace a previously live cell with a dead one if either (1) the
living cell has no more than one live neighbor (i.e. it dies of isolation),
or (2) the living cell has more than three neighbors (i.e. it dies of
overcrowding)

® Survival: retain living cells if they have either 2 or 3 neighbors

One of the most intriguing patterns in Life is an oscillatory propagating
pattern known as the "glider.” It consists of 5 "live” cells and reproduces itself
in a diagonally displaced position once every four iterations. When the states
of Life are projected onto a screen in quick succession by a fast computer, the
glider gives the appearance of "walking" across the screen. The propagation of
this pseudo-stable structure can also be seen as a self-organized emergent

property of the system.
Limit-Cycle

An Attractor describing regular (i.e. periodic or quasi-periodic) temporal
behavior.

Lindenmeyer (or L-) Systems

L-systems were introduced by Aristid Lindenmeyer in 1968 as a model for the
cellular development of filamentous plants. In simplest terms, L-systems
consist of production rules for rewriting abstract strings of symbols. They can
be thought of as generalized Cellular Automata in which the number of sites
can increase over time.

Logistic Equation

The logistic map is one of the simplest (continuous and differentiable)
nonlinear systems that captures most of the key mechanisms responsible for
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producing deterministic chaos. It is 2 one-dimensional nonlinear discrete
difference equation with a single control parameter, a: x_,, = ax (1 ), where
0 <x, <1 and 0 < a < 4 The logistic equation undergoes a sequence of
period-doubling Bifurcations followed by regions of deterministic chaos as a is
varied between the values 0 and 4. Some aspects of this behavior - such as the
ratio of bifurcation intervals as chaos is approached - are Universal; that is, are

independent of the details of the system.
Lotka-Volterra Equations

In 1926, Volterra proposed a simple model for the predation of one species by
another to explain the oscillatory level of certain fish in the Atlantic. If N(t) is
the prey population and P(t) is the predator population at time t then
Volterras's model is dN/dt =N (a - bP), dP/dt =P (cN - d), where a,b,c, and d
are positive constants. The model assumes: (1) prey in absence of predation
grows linearly with N (i.e. in Malthusian fashion); (2) predation reduces prey's
growth rate by a term proportional to the prey and predation populations; (3)
the predator's death rate, in the absence of prey, decays exponentially; (4) the
prey's contribution to the predator's growth rate is proportional to the
available prey as well as to the size of the predator population. The system of
equations is known as the Lotka-Volterra equations because Lotka derived the
same equations in 1920 for a chemical reaction he believed to exhibit periodic
behavior.

Lyapunov Exponent

A fundamental property of chaotic dynamics is sensitivity to small changes to
initial conditions. Initially closely separated starting conditions evolving along
regular dynamical trajectories diverge only linearly in time; a chaotic
evolution, on the other hand, leads to exponential divergence in time.
Lyapunov exponents quantify this divergence by measuring the mean rate of
exponential divergence of initially neighboring trajectories. A trajectory of a
system with a negative Lyapunov exponent is stable and will converge to an
Attractor exponentially with time. The magnitude of the Lyapunov exponent
determines how fast the attractor is approached. A trajectory of a system with a
positive Lyapunov exponent is unstable and will not converge to an attractor.
The magnitude of the positive Lyapunov exponent determines the rate of
exponential divergence of the trajectory.

Markov Process

A Markov process is a process for which, if the present is given, the future and
past are independent of each other. More precisely, if t; < ... < t, are
parameter values, and if 1 < j < n, then the sets of random variables [x(t)), ...,
x(tj_l)] and [x(tjﬂ), ...x(t,)] are mutually independent for given x(tj).
Equivalently, the conditional probability distribution of x(tn) for given x(t;),
.., X(t,,) depends only on the specified value of x(t_,) and is in fact the
conditional probability distribution of x(t,), given x(t ;). An important and
simple example is the Markov chain, in which the number of states is finite or
denumerably infinite.
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Maximum Entropy

The principle of maximum entropy states that when one has only partial
information about the probabilities of possible outcomes of an experiment,
one should choose the probabilities so as to maximize the uncertainty about
the missing information. Put another way, since entropy is a measure of
randomness, one should choose the most random distribution subject to
whatever constraints are imposed on the problem.

Mean-Field Theory

In a mean field approximation a system is assumed to be determined by the
average properties of the system as a whole. In a mean-field-theoretic
description of a thermodynamic system, for example, all particles are
considered to contribute equally to the potential at each site. Therefore, the
mean field theory essentially assumes the intermolecular interaction to be of
infinite range at all temperatures. The mean field theories are qualitatively
quite successful in that they predict the existence of critical points and power
law dependence of the various thermodynamic quantities near the critical
point. They generally become more quantitatively successful as the
dimensionality of the system increases.

Multifractal

The simplest fractal sets are characterized by some form of self-similarity, in
which parts, when magnified by a constant r, appear similar to the original
whole. The more general class of fractals are really multiscale fractals, or
multifractals, which are characterized by multiple subdivisions of the original
into N objects, each magnified by by a different factor r,, i=1,2,...,N.

Navier-Stokes Equations

These are a set of analytically intractable coupled nonlinear partial differential
equations describing fluid flow.

Neural Networks

Neural nets represent a radical new approach to computational problem
solving. The methodology they represent can be contrasted with the
traditional approach to artificial intelligence (AI). Whereas the origins of Al
lay in applying conventional serial processing techniques to high-level
cognitive processing like conceptformation, semantics, symbolic processing,
etc. — or in a top-down approach - neural nets are designed to take the
opposite — or bottom-up - approach. The idea is to have a human-like
reasoning emerge on the macro-scale. The approach itself is inspired by such
basic skills of the human brain as its ability to continue functioning with noisy
and/or incomplete information, its robustness or fault tolerance, its
adaptability to changing environments by learning, etc. Neural nets attempt to
mimic and exploit the parallel processing capability of the human brain in
order to deal with precisely the kinds of problems that the human brain itself
is well adapted for.
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Nonlinearity

If f is a nonlinear function or an operator, and x is a system input (either a
function or variable), then the effect of adding two inputs, x, and x,, first and
then operating on their sum is, in general, not equivalent to operating on two
inputs separately and then adding the outputs together; i.e. . Popular form:
the whole is not necessarily equal to the sum of its parts. Dissipative nonlinear
dynamic systems are capable of exhibiting self-organization and chaos.

NP-Hard Problems

A class of problems, known as nondeterministic polynomial time - or class-NP
~ problems, that may not necessarily be solvable in polynomial time, but the
actual solutions to which may be tested for correctness in polynomial time.

NP-Complete

Just as there are universal computers that, given a particular input, can
simulate any other computer (see Universal Computer), there are
NP-complete problems that, with the appropriate input, are effectively
equivalent to any NP-hard problem of a given size. For example, Boolean
"satisfiability” — i.e. the problem of determining truth values of the variable's of
a Boolean expression so that the expression is true - is known to be an
NP-complete problem.

Order Parameter

An order parameter is a scalar or vector parameter associated with a
continuous phase transition that determines the physical nature of the
transition. It has the value zero in the random state (typically above the
transition temperature) and takes on a nonzero value in the ordered state
(typically below the transition). In the case of a fluid, for example, the order
parameter is a scalar and is the difference in density between the liquid and
vapor phases.

Percolation Theory

Percolation theory represents the simplest model of a disordered system.
Consider a square lattice, where each site is occupied randomly with
probability p or empty with probability 1-p. Occupied and empty sites may
stand for very different physical properties. For simplicity, let us assume that
the occupied sites are electrical conductors, the empty sites represent
insulators, -and that electrical current can flow between nearest neighbor
conductor sites. At low concentration p, the conductor sites are either isolated
or form small clusters of nearest neighbor sites. Two conductor sites belong to
the same cluster if they are connected by a path of nearest neighbor
conductor sites, and a current can flow between them. At low p values, the
mixture is an insulator, since a conducting path connecting opposite edges of
the lattice does not exist. At large p values, on the other hand, many
conduction paths between opposite edges exist, where electrical current can
flow, and the mixture is a conductor. At some concentration in between,
therefore, a threshold concentration p, must exist where for the first time
electrical current can percolate from one edge to the other. Below p_, we have
an insulator; above p, we have a conductor. The threshold concentration is
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called the percolation threshold, or, since it separates two different phases,
the critical concentration.

Petri Nets

Petri nets are abstract models used to represent parallel systems and processes.
They are typically described using directed graphs (i.e. graphs whose edges
are depicted by arrows showing a direction of information flow). More
precisely, a petri net is a seven-tuple (P, T, V, f, g, N, m), where (1) Pis a
nonempty finite set of nodes, (2) T is a nonempty finite set of transitions, (3)
V is a valuation space {0,1}, (4) f is a binary function used in determining the
connections from nodes to transitions (i.e. f: P x T —> V, and if f(p,t)=1 then
node P connects to transition T, otherwise not), (5) g is a binary function used
in determining the transitions to connect to nodes (i.e. gt Tx P ->Vand a
connection is made from t to p if and only if g(t,p)=1), (6) N is a set of
markings {0,1,2,...}, and (7) m is the initial marking function, m: P -> N.

Phase Space

A mathematical space spanned by the dependent variables of a given
dynamical system. If the system is described by an ordinary differential flow
the entire phase history is given by a smooth curve in phase space. Each point
on this curve represents a particular state of the system at a particular time.
For closed systems, no such curve can cross itself. If a phase history a given
system returns to its initial condition in phase space, then the system is
periodic and it will cycle through this closed curve for all time. Example: a
mechanical oscillator moving in one-dimension has a two-dimensional phase
space spanned by the position and momentum variables.

Phase Transition

An abrupt change in a system'’s behavior. A common example is the gas-liquid
phase transition undergone by water. In such a transition, a plot of density
versus temperature shows a distinct discontinuity at the critical temperature
marking the transition point. Similar behavior can be seen in systems
described by ordinary differential flows and discrete mappings. In nonlinear
dynamical systems, the transition from self-organizing to chaotic behavior is
sometimes referred to as a phase transition (or, more specifically, as an
order-disorder transition).

Phenotype

The overall attributes of an organism arising from the interaction of its
Genotype with the environment.

Poincare Map

A dynamical system is usually defined as a continuous flow, that is (1) is
completely defined at all times by the values of N variables ~ x,(t), %,(t), ...,
x,(t), where x,(t) represents any physical quantity of interest, and (2) its
temporal evolution is specified by an autonomous system of N, possibly
coupled, ordinary first-order differential equations. Once the initial state is
specified, all future states are uniquely defined for all times t. A convenient
method for visualizing continuous trajectories is to construct an equivalent
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discrete-time mapping by a periodic "stroboscopic” sampling of points along a
trajectory. One way of accomplishing this is by the so-called Poincare map (or
surface-ofsection) method. Suppose the trajectories of the system are curves
that live in a three-dimensional Phase Space.The method consists essentially of
keeping track only of the intersections of this curve with a two-dimensional
plane placed somewhere within the phase space.

Prisoner's Dilemma

The prisoner's dilemma is a two person non-zerosum game that has been
widely used in experimental and theoretical investigations of cooperative
behavior. Two persons suspected of a crime are caught, but there is not
enough evidence to sentence them unless one of them confesses. If they are
both quiet (or cooperate, C), both will have to be released. If one confesses
(defects, D) but the other does not, the one who confesses will be released but
the other will be imprisoned for a long time. Finally, if both confess, both will
be imprisoned, but for a shorter time. It is assumed that the prisoner's make
their respective choices separately and independently of one another. If the
game is "played" once, each player find defection to be the optimal behavior,
regardless of what his opponent chooses to do. Finding the optimal strategy to
follow over time, however, is considerably more difficult.

Probabilistic CA

Cellular Automata for which the deterministic state transitions are replaced
with specifications of the probabilities of cell-value assignments. For such
systems, the focus of analysis shifts from studying evolutions of arbitrary initial
states to studying ensembles of trajectories.

Punctuated Equilibrium

A theory introduced in 1972 to account for what the fossil record appears to
suggest are a series of irregularly spaced periods of chaotic and rapid
evolutionary change in what are otherwise long periods of evolutionary stasis.
Some Artificial Life studies suggest that this kind of behavior may be generic
for evolutionary processes in complex adaptive systems.

Quasiperiodic

Characterizes behavior of a dynamical system that is almost, but not quite,
periodic.Quasiperiodic regions of phase space are frequently linked together
to form a Strange Attractor. The transition between such quasiperiodic
regions is characterized by the crossing of a Homoclinic Point.
Quasiperiodicity often results when nonlinear dynamical systems are driven by
periodic driving forces with periods that are incommensurate with (i.e. not a
rational fraction of) the system response time.

Random Boolean Networks

A size N random Boolean network of size k generalizes the basic binary
Cellular Automata model by evolving each site variable xi = 0 or 1 according to
a randomly selected Boolean Function of k inputs. Since there are two choices
for every combination of states of the k inputs at each site, the Boolean
function is randomly selected from among the 2/(2") possible Boolean
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functions of k inputs. This model was first introduced by Kauffman in 1969 in
a study of cellular differentiation in a biological system (binary sites were
interpreted as elements of an ensemble of genes switching on and off
according to some set of random rules). Since its conception, however, related
models have found wide application in an increasingly large domain of diverse
problems. Such models of strongly disordered systems exhibit remarkable and
unexpected order.

Reaction-Diffusion Models

Reaction-diffusion systems, the first studies of which date back to the 1950s,
often exhibit a variety of interesting spatial patterns that evolve in
self-organized fashion. One of the most famous reaction-diffusion systems —
widely regarded as the prototypical example of oscillating chemical reactions ~
is the socalled Belousov-Zhabotinskii (or BZ) reaction. The BZ model involves
the reaction of bromate ions with an organic substrate (typically malonic acid)
in a sulfuric acid solution with cerium (or some other metalion catalyst).
When this mixture is allowed to react exothermally at room temperature,
interesting spatial and temporal oscillations (i.e. chemical waves) result. The
system oscillates, changing from yellow to colorless to back to yellow about
twice a minute with the oscillations typically lasting for over an hour (until the
organic substrate is exhausted). A number of Cellular Automata models have
been found that exhibit BZ-like spatial waves.

Relativistic Information Theory

Relativistic information theory is a concept introduced by Jumarie and has
been suggested as a possible formalism for describing certain aspects of
military command and control processes by Woodcock and Dockery. The basic
idea is that a generalized entropy is endowed with four components, so that it
is equivalent to a fourvector and may be transformed by a Lorentz
transformation (As in relativity). These four components consists of: (1) the
external entropy of the environment (H_), (2) the internal entropy of the
system (H), (3) system goals, and (4) the internal transformation potential,
which measures the efficiency of the system's internal information
transformation. An additional factor, called the organizability, plays the role of
"velocity." Woodcock and Dockery show that it is possible to use relativistic
information theory to compare the relative command and control system
response of two command structures to the world around them. The quantity
of interest is dH,/dH_, or the rate of change of the internal information
environment with respect to changes in the surrounding environment.

Scaling Laws

Theoretical studies of critical phenomena have focused on predicting the
value of critical exponents. One of the most important ideas is the scaling
hypothesis. This hypothesis is modelindependent and applicable to all critical
systems. The underlying assumption is that the long-range correlation of the
order parameter, such as the density fluctuation in a fluid system near the
critical temperature, is responsible for all singular behavior. This assumption
leads to a particular functional form for the equation of state near the critical
point.
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Search Space

The variation of the Cost Function can be imagined to be a landscape of
potential solutions to a problem where the height of each feature represents
its cost. This landscape is sometimes referred to as the search space.

Self-Organization

The spontaneous emergence of macroscopic nonequilibrium organized
structure due to the collective interactions among a large assemblage of
simple microscopic objects.

Self-Organized Criticality

Self-organized criticality (SOC) describes a large body of both
phenomenological and theoretical work having to do with a particular class of
time-scale invariant and spatial-scale invariant phenomena. Fundamentally,
SOC embodies the idea that dynamical systems with many degrees of freedom
naturally self-organize into a critical state in which the same events that
brought that critical state into being can occur in all sizes, with the sizes being
distributed according to a power-law. The kinds of structures SOC seeks to
describe the underlying mechanisms for look like equilibrium systems near
critical points (see Criticality) but are not near equilibrium; instead, they
continue interacting with their environment, “tuning themselves" to a point at
which critical-like behavior appears. Introduced in 1988, SOC is arguably the
only existing holistic mathematical theory of self-organization in complex
systems, describing the behavior of many real systems in physics, biology and
economics. It is also a universal theory in that it predicts that the global
properties of complex systems are independent of the microscopic details of
their structure, and is therefore consistent with the "the whole is greater than
the sum of its parts” approach to complex systems. Put in the simplest possible
terms, SOC asserts that complexity is criticality. That is to say, that SOC is
nature's way of driving everything towards a state of maximum complexity.

Simulated Annealing

A  mathematical technique for general combinatorial optimization
problems.The name comes from the physical process of annealing, during
which a material is first heated and then slowly cooled. During annealing, the
component atoms of a material are allowed to settle into a lower energy state
so that a more stable arrangement of atoms is maintained throughout the
cooling process.

Solitons

A mathematically appealing model of real particles is that of solitons. It is
known that in a dispersive medium, a general wave form changes its shape as it
moves. In a nonlinear system, however, shape-preserving solitary waves exist.
Spatio-Temporal Chaos

A large class of spatially extended systems undergoes a sequence of transitions

leading to dynamical regimes displaying chaos in both space and time. In the
same way as temporal chaos is characterized by the coexistence of a large
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number of interacting time scales, spatio-temporal chaos is characterized by
having a large number of interacting space scales. Examples of systems leading
to spatiotemporal chaos include the Navier-Stokes Equations and
reaction-diffusion equations. Coupled-map Lattices have been used for study.

Spin Glasses

A magnetic material whose magnetic magnets respond to both ferromagnetic
and antiferromagnetic interactions causing frustration, so that not all the
constraints necessary to minimize the system's overall energy can be
simultaneously satisfied. There are exponentially stable states, but finding the
global ground state is an NP-Hard optimization problem.

Strange Attractors

Describes a form of long-term behavior in dissipative dynamical systems. A
strange attractor is an attractor (see Attractor) that displays sensitivity to initial
conditions. That it to say, an attractor such that initially close points become
exponentially separated in time. This has the important consequence that
while the behavior for each initial point may be accurately followed for short
times, prediction of long time behavior of trajectories lying on strange
attractors becomes effectively impossible. Strange attractors also frequently
exhibit a self-similar or fractal structure.

Symbolic Dynamics

Symbolic dynamics is a tool that is used to obtain a coarse-grained
representation of dynamical orbits consisting of discrete-symbol sequences.
This is done by first partitioning the phase space into a finite number of cells
C,, C,,..., C, and and focusing on the successive cell-tocell transitions of the
trajectory. The states of the cells, S(C,), $(C,),..., S(Cy), are treated as symbols
of an N-letter alphabet. Looked at in this way, the continuous dynamics thus
induces on the partition a symbolic dynamics describing how the letters of the
alphabet evolve in time.

Synergetics

Synergetics refers to what can loosely be called the "European” (vice US)
approach to the study of complex systems. Consider a complex system (that is,
a system composed of many individual parts) that is controlled from the
outside in some manner by a control parameter (say, the system is driven by a
constant influx of energy and/or matter). As the control parameter is
changed, the system's state can become unstable and be replaced by a new
state characterized by particular kinds of spatial, temporal or functional
structures. Synergetics consists of strategies of describing what happens when
the macroscopic state of systems undergoes a qualitative change. More
colloquially, "synergy" is used to refer to how the action of two or more entities
("parts”) can achieve an effect that cannot be achieved by any of the parts
alone (see Emergence).

Topological Dimension

The topological dimension of object X is an integer defining the number of
coordinates needed to specify a given point of X. A single point therefore a
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topological dimension equal to zero; a curve has dimension one, a surface has
dimension two, and so on.

Universality

Universal behavior, when used to describe the behavior of a dynamic system,
refers to behavior that is independent of the details of the system's dynamics.
It is a term borrowed from thermodynamics. According to thermodynamics
and statistical mechanics the critical exponents describing the divergence of
certain physical measurables (such as specific heat, magnetization, or
correlation length) are universal at a phase transition in that they are
essentially independent of the physical substance undergoing the phase
transition and depend only on a few fundamental parameters (such as the
dimension of the space).

Unstable Equilibrium
A stationary state of a dynamical system such that an arbitrarily small

perturbation can cause a disturbance of arbitrarily large magnitude. Example:
an egg poised on the vertex of a cone.
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Appendix C: Recommended Reading

Listed below are some recommended introductory texts and
popularizations of nonlinear dynamics and complex systems theory:

Artificial Life: How Computers are Transforming Our Understanding
of Evolution and the Future of Life, S. Levy, New York: Pantheon
Books, 1992. An excellent overview of the basic science and
leading researchers involved in the study of artificial life.

At Home in the Universe: The Search for Laws of SelfOrganization
and Complexity, S. Kauffman, Oxford University Press, 1995. An
empassioned vision of complex systems research by one of the
field's leading researchers.

Cellular Automata Machines: a New Environment for Modeling, T.
Toffoli and N. Margolus, MIT Press, 1987. A detailed discussion
of applications of cellular automata modeling by the principal
designers of MIT's CAM-6 cellular automata machine. The
discussion is technical in parts.

Chaos: Making a New Science, J. Gleick, Viking Penguin, Inc.,
1987. The "classic” of popular science writing. Not to be missed.

Complexity: Life at the Edge of Chaos, R. Lewin, Macmillan
Publishing Company, 1992. Good, solid exposition with an
emphasis on biology. Overall, however, Lewin's book is neither
as well-rounded nor as deep as Waldrop's book (see below).

Complexity: The Emerging Science at the Edge of Order and Chaos, M.
Waldrop, New York: Simon and Schuster, 1992. Waldrop's book
is the best currently available popularization of complex systems
theory as practiced at the Santa Fe Institute. Particularly strong
on research personalities.

Complexity: Metaphors, Models and Reality, edited by G. A. Cowan,
D. Pines and D. Meltzer, Addison-Wesley, 1994. This is a
collection of short, basic research papers by practitioners of
complex systems theory. Each paper is followed by excerpts of
comments made during a panel discussion. Although the papers
are generally presented at a technical level, the collection
provides an excellent overview of complex systems theory.

Fire in the Mind: Science, Faith, and the Search for Order, G.
Johnson, Alfred A. Knopf, 1995. A fun-toread non-technical
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discussion of complex systems theory at the Santa Fe Institute, set
against the canyonlands and history of northern New Mexico.

Frontiers of Complexity: The Search for Order in a Chaotic World, P.
Coveney and R. Highfield, Fawcett Columbine, 1995. A good
Scientific-American-level introduction to nonlinear dynamics and
complex systems theory.

The Garden in the Machine: The Emerging Science of Artificial Life,
Claus Emmenche, Princeton University Press, 1994. A
Scientific-American-level discussion of artificial life. Emmenche's
book is less focused on personalities than Levy's book, but
provides a more thorough (and more technical) discussion of
the science.

Hidden Order: How Adaptation Builds Complexity, J. H. Holland,
Addison-Wesley Publishing Company, 1995. A recent
monograph on using genetic algorithms to model complex
adaptive systems by one of the founding fathers of the field.
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